Affine systems inL2 (ℝd) II: Dual systems

The fiberization of affine systems via dual Gramian techniques, which was developed in previous papers of the authors, is applied here for the study of affine frames that have an affine dual system. Gramian techniques are also used to verify whether a dual pair of affine frames is also a pair of bi-orthogonal Riesz bases. A general method for a painless derivation of a dual pair of affine frames from an arbitrary MRA is obtained via the mixed extension principle.

[1]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[2]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[3]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[4]  Charles A. Micchelli,et al.  Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.

[5]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[6]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[7]  R. DeVore,et al.  On the construction of multivariate (pre)wavelets , 1993 .

[8]  A. Janssen Duality and Biorthogonality for Weyl-Heisenberg Frames , 1994 .

[9]  R. DeVore,et al.  Approximation from shift-invariant subspaces of ₂(^{}) , 1994 .

[10]  R. DeVore,et al.  Approximation from Shift-Invariant Subspaces of L 2 (ℝ d ) , 1994 .

[11]  I. Daubechies,et al.  Gabor Time-Frequency Lattices and the Wexler-Raz Identity , 1994 .

[12]  Zuowei Shen,et al.  Multiresolution and wavelets , 1994, Proceedings of the Edinburgh Mathematical Society.

[13]  A. Ron,et al.  Frames and Stable Bases for Shift-Invariant Subspaces of L2(ℝd) , 1995, Canadian Journal of Mathematics.

[14]  Zuowei Shen,et al.  Gramian Analysis of Affine Bases and Affine Frames. , 1995 .

[15]  A. Ron,et al.  Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ , 1997 .

[16]  Charles K. Chui,et al.  Affine frames, quasi-affine frames, and their duals , 1998, Adv. Comput. Math..

[17]  A. Ron,et al.  Tight compactly supported wavelet frames of arbitrarily high smoothness , 1998 .