Affine systems inL2 (ℝd) II: Dual systems
暂无分享,去创建一个
[1] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[2] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .
[3] Ingrid Daubechies,et al. The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.
[4] Charles A. Micchelli,et al. Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.
[5] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[6] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[7] R. DeVore,et al. On the construction of multivariate (pre)wavelets , 1993 .
[8] A. Janssen. Duality and Biorthogonality for Weyl-Heisenberg Frames , 1994 .
[9] R. DeVore,et al. Approximation from shift-invariant subspaces of ₂(^{}) , 1994 .
[10] R. DeVore,et al. Approximation from Shift-Invariant Subspaces of L 2 (ℝ d ) , 1994 .
[11] I. Daubechies,et al. Gabor Time-Frequency Lattices and the Wexler-Raz Identity , 1994 .
[12] Zuowei Shen,et al. Multiresolution and wavelets , 1994, Proceedings of the Edinburgh Mathematical Society.
[13] A. Ron,et al. Frames and Stable Bases for Shift-Invariant Subspaces of L2(ℝd) , 1995, Canadian Journal of Mathematics.
[14] Zuowei Shen,et al. Gramian Analysis of Affine Bases and Affine Frames. , 1995 .
[15] A. Ron,et al. Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ , 1997 .
[16] Charles K. Chui,et al. Affine frames, quasi-affine frames, and their duals , 1998, Adv. Comput. Math..
[17] A. Ron,et al. Tight compactly supported wavelet frames of arbitrarily high smoothness , 1998 .