8. Network Synchronization

[1]  Jin Zhou,et al.  On the Relationship between the Synchronous State and the Solution of an Isolated Node in a Complex Network: On the Relationship between the Synchronous State and the Solution of an Isolated Node in a Complex Network , 2014 .

[2]  Adilson E Motter,et al.  Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions , 2009, Proceedings of the National Academy of Sciences.

[3]  Xiang Li,et al.  Some Recent Advances in Complex Networks Synchronization , 2009, Recent Advances in Nonlinear Dynamics and Synchronization.

[4]  Z. Duan,et al.  Network synchronizability analysis: a graph-theoretic approach. , 2008, Chaos.

[5]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[6]  Z. Duan,et al.  Analyzing and controlling the network synchronization regions , 2007 .

[7]  Z. Duan,et al.  Complex network synchronizability: analysis and control. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Martin Hasler,et al.  When Symmetrization Guarantees Synchronization in Directed Networks , 2007, Int. J. Bifurc. Chaos.

[9]  Chao Liu,et al.  Network synchronizability analysis: the theory of subgraphs and complementary graphs , 2007, ArXiv.

[10]  Przemyslaw Perlikowski,et al.  Ragged synchronizability of coupled oscillators. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[12]  Tianping Chen,et al.  New approach to synchronization analysis of linearly coupled ordinary differential systems , 2006 .

[13]  Jun-an Lu,et al.  Adaptive synchronization of an uncertain complex dynamical network , 2005, IEEE Transactions on Automatic Control.

[14]  Xiang Li Uniform synchronous criticality of diversely random complex networks , 2005, cond-mat/0506157.

[15]  Xiang Li,et al.  On synchronous preference of complex dynamical networks , 2005 .

[16]  S. Boccaletti,et al.  Synchronization is enhanced in weighted complex networks. , 2005, Physical review letters.

[17]  Ljupco Kocarev,et al.  Synchronization in power-law networks. , 2005, Chaos.

[18]  Xiaofan Wang,et al.  On synchronization in scale-free dynamical networks , 2005 .

[19]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[20]  J. Kurths,et al.  Network synchronization, diffusion, and the paradox of heterogeneity. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2004, IEEE Trans. Autom. Control..

[22]  J. Kurths,et al.  Enhancing complex-network synchronization , 2004, cond-mat/0406207.

[23]  Chunguang Li,et al.  Synchronization in general complex dynamical networks with coupling delays , 2004 .

[24]  Xiang Li,et al.  Pinning a complex dynamical network to its equilibrium , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..

[25]  Chunguang Li,et al.  Phase synchronization in small-world networks of chaotic oscillators , 2004 .

[26]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[27]  T. Ichinomiya Frequency synchronization in a random oscillator network. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Daizhan Cheng,et al.  Characterizing the synchronizability of small-world dynamical networks , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[29]  Beom Jun Kim,et al.  Factors that predict better synchronizability on complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Guanrong Chen,et al.  Chaos synchronization of general complex dynamical networks , 2004 .

[31]  A. F. Pacheco,et al.  Synchronization of Kuramoto oscillators in scale-free networks , 2004, cond-mat/0401266.

[32]  F. Atay,et al.  Delays, connection topology, and synchronization of coupled chaotic maps. , 2003, Physical review letters.

[33]  Guanrong Chen,et al.  Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint , 2003 .

[34]  Xiang Li,et al.  A local-world evolving network model , 2003 .

[35]  Guanrong Chen,et al.  Complex networks: small-world, scale-free and beyond , 2003 .

[36]  C. Wu Perturbation of coupling matrices and its effect on the synchronizability in arrays of coupled chaotic systems , 2003, nlin/0307052.

[37]  Adilson E Motter,et al.  Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? , 2003, Physical review letters.

[38]  Xiao Fan Wang,et al.  Complex Networks: Topology, Dynamics and Synchronization , 2002, Int. J. Bifurc. Chaos.

[39]  G. Rangarajan,et al.  Stability of synchronized chaos in coupled dynamical systems , 2002, nlin/0201037.

[40]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[41]  Beom Jun Kim,et al.  Synchronization on small-world networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Xiao Fan Wang,et al.  Synchronization in Small-World Dynamical Networks , 2002, Int. J. Bifurc. Chaos.

[43]  Guanrong Chen,et al.  Synchronization in scale-free dynamical networks: robustness and fragility , 2001, cond-mat/0105014.

[44]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[45]  A. Barabasi,et al.  Self-organizing processes: The sound of many hands clapping , 2000, Nature.

[46]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[47]  Mingzhou Ding,et al.  STABILITY OF SYNCHRONOUS CHAOS AND ON-OFF INTERMITTENCY IN COUPLED MAP LATTICES , 1997 .

[48]  L. Chua,et al.  Application of graph theory to the synchronization in an array of coupled nonlinear oscillators , 1995 .

[49]  L. Chua,et al.  Synchronization in an array of linearly coupled dynamical systems , 1995 .

[50]  Carroll,et al.  Synchronous chaos in coupled oscillator systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[51]  V. Jacobson,et al.  The synchronization of periodic routing messages , 1993, SIGCOMM '93.

[52]  M. Degroot Reaching a Consensus , 1974 .

[53]  A. Winfree Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.