Pantographic 2D sheets: Discussion of some numerical investigations and potential applications

The study of generalized continuum models through the numerical investigation of discrete systems considered as an approximation to a homogenized continuum limit is nowadays a well-known research approach in mechanics. In the present paper, a system constituted by a large number of beams interconnected via ideal hinges, called here a pantographic sheet, is considered, and some numerical simulations concerning the static and dynamic analysis of the system are presented and discussed. The observed behavior significantly differs from what one would expect from ordinary first gradient continuum models. Moreover, interesting application possibilities entailed by the specific characteristics of the structure, and in particular by the strong non-linear behavior of the mechanical variables, are discussed.

[1]  V. Eremeyev,et al.  Wave processes in nanostructures formed by nanotube arrays or nanosize crystals , 2010 .

[2]  Luca Placidi,et al.  A variational approach for a nonlinear 1-dimensional second gradient continuum damage model , 2015 .

[3]  Philippe Boisse,et al.  Locking in simulation of composite reinforcement deformations. Analysis and treatment , 2013 .

[4]  N. Roveri,et al.  Fractional dissipation generated by hidden wave-fields , 2015 .

[5]  J. Ganghoffer,et al.  Equivalent mechanical properties of biological membranes from lattice homogenization. , 2011, Journal of the mechanical behavior of biomedical materials.

[6]  A. Carcaterra,et al.  Space average and wave interference in vibration conductivity , 2003 .

[7]  J. Ganghoffer,et al.  Equivalent mechanical properties of auxetic lattices from discrete homogenization , 2012 .

[8]  A. C. Eringen,et al.  Mechanics of Micromorphic Continua , 1968 .

[9]  Pierre Seppecher,et al.  Asymptotics of a non-planar rod in non-linear elasticity , 2006, Asymptot. Anal..

[10]  Leopoldo Greco,et al.  Wave propagation in pantographic 2D lattices with internal discontinuities , 2014, 1412.3926.

[11]  Philippe Boisse,et al.  Tension locking in finite-element analyses of textile composite reinforcement deformation , 2013 .

[12]  F. D. Reis,et al.  Discrete homogenization of architectured materials: Implementation of the method in a simulation tool for the systematic prediction of their effective elastic properties , 2010 .

[13]  S Belouettar,et al.  A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. , 2012, Journal of the mechanical behavior of biomedical materials.

[14]  Luca Placidi,et al.  A microscale second gradient approximation of the damage parameter of quasi‐brittle heterogeneous lattices , 2014 .

[15]  A.P.S. Selvadurai,et al.  Concentrated loading of a fibre-reinforced composite plate: Experimental and computational modeling of boundary fixity , 2014 .

[16]  Antonio Cazzani,et al.  Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches , 2016 .

[17]  Ugo Andreaus,et al.  Vibrations of Cracked Euler-Bernoulli Beams using Meshless Local Petrov-Galerkin (MLPG) Method , 2005 .

[18]  Emilio Turco,et al.  Elasto-plastic analysis of Kirchhoff plates by high simplicity finite elements , 2000 .

[19]  Fabrizio Vestroni,et al.  Nonlinear Features in the Dynamic Response of a Cracked Beam Under Harmonic Forcing , 2005 .

[20]  Giuseppe Piccardo,et al.  Linear instability mechanisms for coupled translational galloping , 2005 .

[21]  Pierre Seppecher,et al.  A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium , 1997 .

[22]  N. Morozov,et al.  Method of determining the eigenfrequencies of an ordered system of nanoobjects , 2007 .

[23]  Federica Tubino,et al.  Some research perspectives in galloping phenomena: critical conditions and post-critical behavior , 2015 .

[24]  Giuseppe Piccardo,et al.  Postcritical Behavior of Cables Undergoing Two Simultaneous Galloping Modes , 1998 .

[25]  Francesco dell’Isola,et al.  Elastne kahemõõtmeline pantograafiline võre: Numbriline analüüs staatilisest tagasisidest ja lainelevist , 2015 .

[26]  Possible Approaches in Modelling Rearrangement in a Microstructured Material , 2007 .

[27]  A. Misra,et al.  Higher-Order Stress-Strain Theory for Damage Modeling Implemented in an Element-free Galerkin Formulation , 2010 .

[28]  N. Morozov,et al.  The spectrum of natural oscillations of an array of micro- or nanospheres on an elastic substrate , 2007 .

[29]  Antonio Cazzani,et al.  Numerical aspects of coupling strongly frequency-dependent soil–foundation models with structural finite elements in the time-domain , 2012 .

[30]  J. Altenbach,et al.  On generalized Cosserat-type theories of plates and shells: a short review and bibliography , 2010 .

[31]  Pierre Seppecher,et al.  Linear elastic trusses leading to continua with exotic mechanical interactions , 2011 .

[32]  ON THE DYNAMICS OF A BEAM PARTIALLY SUPPORTED BY AN ELASTIC FOUNDATION: AN EXACT SOLUTION-SET , 2013 .

[33]  James A. Sherwood,et al.  Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results , 2008 .

[34]  A. Freidin,et al.  The stability of the equilibrium of two-phase elastic solids , 2007 .

[35]  Antonio Cazzani,et al.  Isogeometric analysis of plane-curved beams , 2016 .

[36]  A. N. Solov’ev,et al.  On the determination of eigenfrequencies for nanometer-size objects , 2006 .

[37]  Leopoldo Greco,et al.  B-Spline interpolation of Kirchhoff-Love space rods , 2013 .

[38]  G. Rosi,et al.  Band gaps in the relaxed linear micromorphic continuum , 2014, 1405.3493.

[39]  Jean-François Ganghoffer,et al.  Construction of Micropolar Continua from the Homogenization of Repetitive Planar Lattices , 2011 .

[40]  Leopoldo Greco,et al.  An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod , 2014 .

[41]  Yang Yang,et al.  Higher-Order Continuum Theory Applied to Fracture Simulation of Nanoscale Intergranular Glassy Film , 2011 .

[42]  Francesco dell’Isola,et al.  How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert” , 2012 .

[43]  Giuseppe Piccardo,et al.  A linear curved-beam model for the analysis of galloping in suspended cables , 2007 .

[44]  Victor A. Eremeyev,et al.  Deformation analysis of functionally graded beams by the direct approach , 2012 .