Duality and basis functions for robust H2-performance analysis

The robust H2-Performance of a plant with a prescribed uncertain component refers to its white noise rejection level in the worst case (with respect to its uncertainty set). In this paper, we derive a dual formulation for the computation of the robust H2-performance of a plant with unit gain structured uncertainty. The dual framework gives a tight lower bound on robust H2-Performance with no duality gap with respect to the primal approach (Paganini, 1995a). We also show how the upper and lower bounds for the robust H2-Performance of a plant may be computed using semidefinite programming/linear matrix inequality-type formulae based on basis functions, and provide an example which enables us to demonstrate the relative merits and the complementary nature of the basis function and the gridding approaches to robust H2-performance analysis, for both the primal and the dual formulations.

[1]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[2]  Non-full-rank causal approximations of full-rank multivariate stationary processes with rational spectrum , 1990 .

[3]  P. Khargonekar,et al.  Mixed H/sub 2//H/sub infinity / control: a convex optimization approach , 1991 .

[4]  A. Rantzer,et al.  A Format for Multiplier Optimization , 1995 .

[5]  J. Doyle,et al.  Review of LFTs, LMIs, and mu. [Linear Fractional Transformations, Linear Matrix Inequalities , 1991 .

[6]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[7]  A. Tits,et al.  Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics , 1991 .

[8]  D. McFarlane,et al.  Optimal guaranteed cost control and filtering for uncertain linear systems , 1994, IEEE Trans. Autom. Control..

[9]  V. Balakrishnan Linear matrix inequalities in robustness analysis with multipliers , 1995 .

[10]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[11]  Maarten Steinbuch,et al.  μ-Analysis and synthesis toolbox (μ-tools): G. J. Balas, J. C. Doyle, K. Glover, A. Packard and R. Smith , 1994, Autom..

[12]  Kemin Zhou,et al.  Mixed /spl Hscr//sub 2/ and /spl Hscr//sub /spl infin// performance objectives. I. Robust performance analysis , 1994 .

[13]  Keat-Choon Goh,et al.  Robust analysis, sectors, and quadratic functionals , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[14]  F. Paganini Sets and Constraints in the Analysis Of Uncertain Systems , 1996 .

[15]  A. Packard,et al.  Optimal LQG performance of linear uncertain systems using state-feedback , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[16]  Arkadi Nemirovski,et al.  The projective method for solving linear matrix inequalities , 1997, Math. Program..

[17]  D. Bernstein,et al.  LQG control with an H/sup infinity / performance bound: a Riccati equation approach , 1989 .

[18]  John Doyle,et al.  Structured uncertainty in control system design , 1985, 1985 24th IEEE Conference on Decision and Control.

[19]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[20]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[21]  M. Safonov,et al.  Real/Complex Km-Synthesis without Curve Fitting , 1993 .

[22]  M. Athans,et al.  A multiloop generalization of the circle criterion for stability margin analysis , 1981 .

[23]  A. Stoorvogel The robust H2 control problem: a worst-case design , 1993, IEEE Trans. Autom. Control..

[24]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[25]  Stephen P. Boyd,et al.  A primal—dual potential reduction method for problems involving matrix inequalities , 1995, Math. Program..

[26]  W. Rudin Real and complex analysis , 1968 .

[27]  W. Haddad,et al.  LQG control with an H∞ performance bound: a riccati equation approach , 1988, 1988 American Control Conference.

[28]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[29]  K. Poolla,et al.  Robust performance against time-varying structured perturbations , 1995, IEEE Trans. Autom. Control..

[30]  Kemin Zhou,et al.  Mixed /spl Hscr//sub 2/ and /spl Hscr//sub /spl infin// performance objectives. II. Optimal control , 1994 .

[31]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[32]  G. Stein,et al.  Performance and robustness analysis for structured uncertainty , 1982, 1982 21st IEEE Conference on Decision and Control.

[33]  P. Peres,et al.  H ∞ guaranteed cost control for uncertain continuous-time linear systems , 1993 .