Girth and treewidth

The length of the shortest cycle in a graph G is called the girth of G. In particular, we show that if G has girth at least g and average degree at least d, then tw(G) = Ω(1/g+1 (d - 1)⌊(g - 1)/2⌋). In view of a famous conjecture regarding the existence of graphs with girth g, minimum degree δ and having at most c(δ - 1)⌊(g - 1)/2⌋ vertices (for some constant c), this lower bound seems to be almost tight (but for a multiplicative factor of g + 1).

[1]  Stefan Arnborg,et al.  Linear time algorithms for NP-hard problems restricted to partial k-trees , 1989, Discret. Appl. Math..

[2]  J. A. Bondy,et al.  Basic graph theory: paths and circuits , 1996 .

[3]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[4]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[5]  Reinhard Diestel,et al.  Dense Minors In Graphs Of Large Girth , 2004, Comb..

[6]  Wolfgang Mader,et al.  Topological Subgraphs in Graphs of Large Girth , 1998, Comb..

[7]  Alexandr V. Kostochka,et al.  Lower bound of the hadwiger number of graphs by their average degree , 1984, Comb..

[8]  Stefan Arnborg,et al.  Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey , 1985, BIT.

[9]  L. Sunil Chandran A High Girth Graph Construction , 2003, SIAM J. Discret. Math..

[10]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[11]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[12]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[13]  Daniela Kühn,et al.  Minors in graphs of large girth , 2003, Random Struct. Algorithms.

[14]  Daniela Kühn,et al.  Topological Minors in Graphs of Large Girth , 2002, J. Comb. Theory, Ser. B.

[15]  Noga Alon,et al.  The Moore Bound for Irregular Graphs , 2002, Graphs Comb..

[16]  Torben Hagerup,et al.  Parallel Algorithms with Optimal Speedup for Bounded Treewidth , 1995, SIAM J. Comput..

[17]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[18]  A. Thomason An extremal function for contractions of graphs , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  Carsten Thomassen Girth in graphs , 1983, J. Comb. Theory, Ser. B.

[20]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[21]  Daniela Kühn,et al.  Subdivisions of Kr+2 in Graphs of Average Degree at Least r+epsilon and Large but Constant Girth , 2004, Comb. Probab. Comput..

[22]  L. Sunil Chandran,et al.  A Linear Time Algorithm for Enumerating All the Minimum and Minimal Separators of a Chordal Graph , 2001, COCOON.

[23]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.