Asymptotically minimax regret for models with hidden variables
暂无分享,去创建一个
[1] L. M. M.-T.. Theory of Probability , 1929, Nature.
[2] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[3] Jorma Rissanen,et al. Fisher information and stochastic complexity , 1996, IEEE Trans. Inf. Theory.
[4] Andrew R. Barron,et al. Minimax redundancy for the class of memoryless sources , 1997, IEEE Trans. Inf. Theory.
[5] Jorma Rissanen,et al. The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.
[6] A. Barron,et al. Asymptotically minimax regret by Bayes mixtures , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[7] A. Barron,et al. Mixture models achieving optimal coding regret , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).
[8] Andrew R. Barron,et al. Asymptotic minimax regret for data compression, gambling, and prediction , 1997, IEEE Trans. Inf. Theory.
[9] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[10] A. Barron,et al. Asymptotically minimax regret for exponential families , 2005 .
[11] A. Barron,et al. STATISTICAL CURVATURE AND STOCHASTIC COMPLEXITY , 2006 .
[12] Andrew R. Barron,et al. Asymptotically minimax regret by Bayes mixtures for non-exponential families , 2013, 2013 IEEE Information Theory Workshop (ITW).
[13] Tsutomu Kawabata,et al. Properties of Jeffreys Mixture for Markov Sources , 2013, IEEE Transactions on Information Theory.
[14] Gou Hosoya,et al. 国際会議参加報告:2014 IEEE International Symposium on Information Theory , 2014 .