Spectral variation of the birefringence, group birefringence and retardance of a gypsum plate measured using the interference of polarized light

Abstract Polarized white light interferometry is used to characterize the wavelength dependence of the birefringence, group birefringence and retardance of a gypsum crystal. Two different calculation schemes are used to extract values of the birefringence across the whole visible spectrum. In the spectral range 435 nm–642 nm, the variation of the gypsum birefringence is fitted to the two terms Cauchy formula and to a fourth order dispersion function. The gypsum birefringence is found to be inversely proportional with wavelength. The experimental method used gives a relative error in finding the gypsum birefringence of an order of 6×10−4. The wavelength dependence of gypsum group birefringence is also calculated with a relative error of order 5×10−4. In the same spectral range, the retardance changes by 28π and the gypsum plate introduced halfwave retardance 15 times.

[1]  Dalibor Ciprian,et al.  Direct measurement of dispersion of the group refractive indices of quartz crystal by white-light spectral interferometry , 2007 .

[2]  F. Donald Bloss,et al.  An introduction to the methods of optical crystallography , 1961 .

[3]  W. Bragg,et al.  The crystal structures of minerals , 1965 .

[4]  P. Hariharan Broad-band apochromatic retarders: choice of materials , 2002 .

[5]  Michael Bass,et al.  Handbook of optics , 1995 .

[6]  Nicholas Chako,et al.  Wave propagation and group velocity , 1960 .

[7]  S. El-zaiat,et al.  Interferometric determination of the dispersion and atomic parameters of some eye vitreous substitute solutions , 1996 .

[8]  D. W. Fischer,et al.  Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference , 1995 .

[9]  Gorachand Ghosh,et al.  Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals , 1999 .

[10]  Giuseppe A. Marzo,et al.  The optical constants of gypsum particles as analog of Martian sulfates , 2002 .

[11]  H. Delbarre,et al.  Determination of dispersion characteristics in anisotropic materials using ultrashort pulses , 1998 .

[12]  A. Emslie,et al.  Optical constants of monoclinic anisotropic crystals: gypsum. , 1983, Applied optics.

[13]  Accurate determination of solid and liquid dispersions from spectra channeled with the Fabry-Perot interferometer. , 1997, Applied optics.

[14]  Petr Hlubina Interference of white light analyzed at the output of a birefringent crystal by a fibre-optic spectrometer , 2005 .

[15]  広 久保田,et al.  Principle of Optics , 1960 .

[16]  R. J. Bell,et al.  Optical properties of calcite and gypsum in crystalline and powdered form in the infrared and far-infrared , 1993 .

[17]  S. El-zaiat,et al.  Interferometric determination of the birefringence dispersion of anisotropic materials , 1997 .

[18]  D. Malacara,et al.  A Simple Achromatic Half-wave Retarder , 1994 .

[19]  G. Li,et al.  Refractive index measurement using a standard compensating method. , 1990, Applied Optics.

[20]  Hervé Delbarre,et al.  High-precision index measurement in anisotropic crystals using white-light spectral interferometry , 2000 .

[21]  O. Soares,et al.  Birefringence measurements by double speckle photography. , 1987, Applied optics.

[22]  S. Fonti,et al.  The infrared optical constants of limestone particles and implications for the search of carbonates on Mars , 1998 .

[23]  P. Hariharan,et al.  Achromatic and apochromatic halfwave and quarterwave retarders , 1996 .

[24]  Armando Blanco,et al.  The complex refractive index of limestone particles: an extension to the FIR range for Mars applications , 2002 .

[25]  Daniel Taupin,et al.  Probabilities data reduction and error analysis in the physical sciences/ by Daniel Taupin , 1988 .

[26]  P. Hariharan,et al.  Broad-band superachromatic retarders and circular polarizers for the UV, visible and near infrared , 2004 .

[27]  O. Kafri,et al.  Direct birefringence measurements using moire ray deflection techniques. , 1985, Applied Optics.