The ventral fiber pathway for pantomime of object use

The current concept of a dual loop system of brain organization predicts a domain-general dual-pathway architecture involving dorsal and ventral fiber connections. We investigated if a similar dichotomy of brain network organization applies for pantomime (P) and imitation of meaningless gestures (I). Impairments of these tasks occur after left hemispheric brain lesions causing apraxia. Isolated impairments and double-dissociations point towards an anatomical segregation. Frontal and parietal areas seem to contribute differently. A special role of the inferior frontal gyrus and underlying fiber pathways was suggested recently. Using a combined fMRI/DTI-approach, we compared the fiber pathway architecture of left hemispheric frontal, temporal and parietal network components of pantomime and imitation. Thereby, we separated object effects from pantomime-specific effects. P and I both engage a fronto-temporo-parietal network of cortical areas interconnected by a dorsal fiber system (superior longitudinal fascicle) for direct sensory-motor interactions. The pantomime-specific effect additionally involved the triangular part of the inferior frontal gyrus, the middle temporal gyrus, the inferior parietal cortex and the intraparietal sulcus, interconnected by ventral fibers of the extreme capsule, likely related to higher-order conceptual and semantic operations. We discuss this finding in the context of the dual loop model and recent anatomical concepts.

[1]  D. Na,et al.  Functional magnetic resonance imaging during pantomiming tool-use gestures , 2001, Experimental Brain Research.

[2]  B.W. Kreher,et al.  Connecting and merging fibres: Pathway extraction by combining probability maps , 2008, NeuroImage.

[3]  Sandra E. Black,et al.  An update on the Conceptual–Production Systems model of apraxia: Evidence from stroke , 2012, Brain and Cognition.

[4]  Stefan Klöppel,et al.  Combining Functional and Anatomical Connectivity Reveals Brain Networks for Auditory Language Comprehension , 2022 .

[5]  F. Binkofski,et al.  Two action systems in the human brain , 2013, Brain and Language.

[6]  R. Cubelli,et al.  Cognition in Action: Testing a Model of Limb Apraxia , 2000, Brain and Cognition.

[7]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[8]  Volkmar Glauche,et al.  Ventral and dorsal pathways for language , 2008, Proceedings of the National Academy of Sciences.

[9]  Michela Gamberini,et al.  The Most Direct Visual Pathway to the Frontal Cortex , 2004, Cortex.

[10]  Volkmar Glauche,et al.  Action semantics and movement characteristics engage distinct processing streams during the observation of tool use , 2013, Experimental Brain Research.

[11]  Alfonso Caramazza,et al.  What is the role of motor simulation in action and object recognition? Evidence from apraxia , 2007, Cognitive neuropsychology.

[12]  K. Heilman,et al.  Two forms of ideomotor apraxia , 1982, Neurology.

[13]  L. Buxbaum,et al.  Distinctions between manipulation and function knowledge of objects: evidence from functional magnetic resonance imaging. , 2005, Brain research. Cognitive brain research.

[14]  D. Boussaoud,et al.  Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: evidence for largely segregated visuomotor pathways , 2002, Experimental Brain Research.

[15]  Cornelius Weiller,et al.  The dual loop model: its relation to language and other modalities , 2012, Front. Evol. Neurosci..

[16]  Dr. phil. et med. H. Liepmann Das Krankheitsbild der Apraxie (“motorische Asymbolie”) auf Grund eines Falles von einseitiger Apraxie (Schluss.) , 1900 .

[17]  G. Vingerhoets,et al.  Conceptual and physical object qualities contribute differently to motor affordances , 2009, Brain and Cognition.

[18]  Alessia Tessari,et al.  Neuropsychological evidence for a strategic control of multiple routes in imitation. , 2006, Brain : a journal of neurology.

[19]  B. Rossion,et al.  Revisiting Snodgrass and Vanderwart's Object Pictorial Set: The Role of Surface Detail in Basic-Level Object Recognition , 2004, Perception.

[20]  D. Pandya,et al.  Distinct Parietal and Temporal Pathways to the Homologues of Broca's Area in the Monkey , 2009, PLoS biology.

[21]  Gregory Króliczak,et al.  A common network in the left cerebral hemisphere represents planning of tool use pantomimes and familiar intransitive gestures at the hand-independent level. , 2009, Cerebral cortex.

[22]  N. Geschwind Disconnexion syndromes in animals and man. I. , 1965, Brain : a journal of neurology.

[23]  D. Pandya,et al.  Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. , 2005, Cerebral cortex.

[24]  Andreas Prescher,et al.  Fiber anatomy of dorsal and ventral language streams , 2013, Brain and Language.

[25]  Toshiharu Nakai,et al.  An fMRI study of tool-use gestures: body part as object and pantomime , 2004, Neuroreport.

[26]  Scott H. Johnson-Frey The neural bases of complex tool use in humans , 2004, Trends in Cognitive Sciences.

[27]  M. Seghier,et al.  Functional Subdivisions in the Left Angular Gyrus Where the Semantic System Meets and Diverges from the Default Network , 2010, The Journal of Neuroscience.

[28]  D. Pandya,et al.  The extreme capsule in humans and rethinking of the language circuitry , 2009, Brain Structure and Function.

[29]  G. Rizzolatti,et al.  The Cortical Motor System , 2001, Neuron.

[30]  Lisa Koski,et al.  Deconstructing apraxia: understanding disorders of intentional movement after stroke , 2002, Current opinion in neurology.

[31]  L. Buxbaum,et al.  Action knowledge, visuomotor activation, and embodiment in the two action systems , 2010, Annals of the New York Academy of Sciences.

[32]  Cornelius Weiller,et al.  Neural bases of imitation and pantomime in acute stroke patients: distinct streams for praxis. , 2014, Brain : a journal of neurology.

[33]  P. Strick,et al.  Motor areas of the medial wall: a review of their location and functional activation. , 1996, Cerebral cortex.

[34]  Michael Andres,et al.  Distinct contribution of the parietal and temporal cortex to hand configuration and contextual judgements about tools , 2013, Cortex.

[35]  P. Strick,et al.  Imaging the premotor areas , 2001, Current Opinion in Neurobiology.

[36]  J L Lancaster,et al.  Automated Talairach Atlas labels for functional brain mapping , 2000, Human brain mapping.

[37]  Paul J. Laurienti,et al.  An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets , 2003, NeuroImage.

[38]  G. Goldenberg Apraxia and the parietal lobes , 2009, Neuropsychologia.

[39]  E. Roy,et al.  Common Considerations In The Study of Limb, Verbal And Oral Apraxia , 1985 .

[40]  K. Heilman,et al.  A Cognitive Neuropsychological Model of Limb Praxis , 1991 .

[41]  Chris Rorden,et al.  Pantomime of tool use depends on integrity of left inferior frontal cortex. , 2007, Cerebral cortex.

[42]  D. Perani,et al.  Dorsal and ventral pathways in language development , 2013, Brain and Language.

[43]  M. Catani,et al.  The rises and falls of disconnection syndromes. , 2005, Brain : a journal of neurology.

[44]  Jody C. Culham,et al.  Observing Learned Object-specific Functional Grasps Preferentially Activates the Ventral Stream , 2010, Journal of Cognitive Neuroscience.

[45]  J. Decety,et al.  Does visual perception of object afford action? Evidence from a neuroimaging study , 2002, Neuropsychologia.

[46]  N. Geschwind The apraxias: neural mechanisms of disorders of learned movement. , 1975, American scientist.

[47]  P. Peigneux,et al.  [A neuropsychological and functional brain imaging study of visuo-imitative apraxia]. , 2000, Revue neurologique.

[48]  G. Rizzolatti,et al.  Two different streams form the dorsal visual system: anatomy and functions , 2003, Experimental Brain Research.

[49]  Laurel J. Buxbaum,et al.  Deficient internal models for planning hand–object interactions in apraxia , 2005, Neuropsychologia.

[50]  Volkmar Glauche,et al.  Functional properties and interaction of the anterior and posterior intraparietal areas in humans , 2003, The European journal of neuroscience.

[51]  Emmanuel A Stamatakis,et al.  Functional organization of the neural language system: dorsal and ventral pathways are critical for syntax. , 2013, Cerebral cortex.

[52]  R. E Passingham,et al.  Cerebral dominance for action in the human brain: the selection of actions , 2001, Neuropsychologia.

[53]  K. Heilman,et al.  Apraxia After a Superior Parietal Lesion , 1986, Cortex.

[54]  M. Jeannerod,et al.  Mental imaging of motor activity in humans , 1999, Current Opinion in Neurobiology.

[55]  L. Deangelis,et al.  Multiple paragangliomas in neurofibromatosis: a new neuroendocrine neoplasia. , 1987, Neurology.

[56]  J. Hermsdörfer,et al.  Neural representations of pantomimed and actual tool use: Evidence from an event-related fMRI study , 2007, NeuroImage.

[57]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[58]  Derek K. Jones,et al.  Virtual in Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain , 2002, NeuroImage.

[59]  Leslie G. Ungerleider,et al.  Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys , 1982, Behavioural Brain Research.

[60]  G. Vingerhoets,et al.  Neural correlates of pantomiming familiar and unfamiliar tools: Action semantics versus mechanical problem solving? , 2011, Human brain mapping.

[61]  R. E Passingham,et al.  Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study , 2003, NeuroImage.

[62]  J Hermsdörfer,et al.  The effect of tactile feedback on pantomime of tool use in apraxia , 2004, Neurology.

[63]  Cornelius Weiller,et al.  How the ventral pathway got lost – And what its recovery might mean , 2011, Brain and Language.

[64]  Oliver Speck,et al.  Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system , 2006, NeuroImage.

[65]  M. Walton,et al.  Action sets and decisions in the medial frontal cortex , 2004, Trends in Cognitive Sciences.

[66]  Georg Goldenberg,et al.  The Neural Basis of Imitation is Body Part Specific , 2006, The Journal of Neuroscience.

[67]  J. Hermsdörfer,et al.  Cortical Correlates of Gesture Processing: Clues to the Cerebral Mechanisms Underlying Apraxia during the Imitation of Meaningless Gestures , 2001, NeuroImage.

[68]  M. Mehler Visuo-Imitative Apraxia , 1987 .

[69]  Gereon R. Fink,et al.  Neural basis of pantomiming the use of visually presented objects , 2004, NeuroImage.

[70]  Georg Goldenberg,et al.  Imitating gestures and manipulating a mannikin—The representation of the human body in ideomotor apraxia , 1995, Neuropsychologia.

[71]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[72]  Volkmar Glauche,et al.  Processing Pathways in Mental Arithmetic—Evidence from Probabilistic Fiber Tracking , 2013, PloS one.

[73]  Steven Laureys,et al.  Imaging a cognitive model of apraxia: The neural substrate of gesture‐specific cognitive processes , 2004, Human brain mapping.

[74]  J. Moll,et al.  Functional MRI correlates of real and imagined tool-use pantomimes , 2000, Neurology.

[75]  Angela D. Friederici,et al.  Pathways to language: fiber tracts in the human brain , 2009, Trends in Cognitive Sciences.

[76]  Y. Rossetti,et al.  No double-dissociation between optic ataxia and visual agnosia: Multiple sub-streams for multiple visuo-manual integrations , 2006, Neuropsychologia.

[77]  Volkmar Glauche,et al.  Ventral and dorsal fiber systems for imagined and executed movement , 2012, Experimental Brain Research.

[78]  J. Mazziotta,et al.  Cortical mechanisms of human imitation. , 1999, Science.

[79]  R T Knight,et al.  Neural representations of skilled movement. , 2000, Brain : a journal of neurology.

[80]  G. Goldenberg,et al.  The meaning of meaningless gestures: A study of visuo-imitative apraxia , 1997, Neuropsychologia.

[81]  Klaus Willmes,et al.  Where numbers meet words: a common ventral network for semantic classification. , 2014, Scandinavian journal of psychology.

[82]  A Bartolo,et al.  Pantomimes are special gestures which rely on working memory , 2003, Brain and Cognition.

[83]  Gereon R. Fink,et al.  Common and Differential Neural Mechanisms Supporting Imitation of Meaningful and Meaningless Actions , 2005, Journal of Cognitive Neuroscience.

[84]  E. Renzi,et al.  The Executive And Ideational Components of Apraxia , 1988, Cortex.

[85]  D. Pandya,et al.  Fiber Pathways of the Brain , 2006 .

[86]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[87]  B. Milner,et al.  Performance of complex arm and facial movements after focal brain lesions , 1981, Neuropsychologia.

[88]  Murray Grossman,et al.  Left Inferior Parietal Representations for Skilled Hand-Object Interactions: Evidence from Stroke and Corticobasal Degeneration , 2007, Cortex.

[89]  G. Goldenberg,et al.  Tool use and mechanical problem solving in apraxia , 1998, Neuropsychologia.

[90]  K M Heilman,et al.  Pantomime comprehension and ideomotor apraxia. , 1985, Journal of neurology, neurosurgery, and psychiatry.

[91]  D. Norman,et al.  Attention to action: Willed and automatic control , 1980 .

[92]  Stefan Klöppel,et al.  Damage to ventral and dorsal language pathways in acute aphasia. , 2013 .

[93]  Scott T. Grafton,et al.  A distributed left hemisphere network active during planning of everyday tool use skills. , 2004, Cerebral cortex.

[94]  H. Spinnler,et al.  Ideomotor apraxia: a study of initial severity , 1987, Acta neurologica Scandinavica.

[95]  Ramón Leiguarda,et al.  Limb Apraxia: Cortical or Subcortical , 2001, NeuroImage.

[96]  Gang Huang,et al.  [Correlation of the uptake of technetium-99m methoxyisobutyl isonitrile with expression of multidrug resistance genes mdr-1 and MRP in human lung cancer]. , 2002, Zhonghua yi xue za zhi.

[97]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[98]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[99]  Alex Martin,et al.  Grounding Object Concepts in Perception and Action: Evidence from FMRI Studies of Tools , 2007, Cortex.

[100]  C D Marsden,et al.  Limb apraxias: higher-order disorders of sensorimotor integration. , 2000, Brain : a journal of neurology.

[101]  C. Weiller,et al.  Structural connectivity for visuospatial attention: significance of ventral pathways. , 2010, Cerebral cortex.