Sets of integers with no large sum-free subset

Answering a question of P. Erd}os from 1965, we show that for every " > 0 there is a set A of n integers with the following property: every set A 0 A with at least 1 + " n elements contains three distinct elements x;y;z with x + y = z. Contents

[1]  Vsevolod F. Lev,et al.  Open problems in additive combinatorics , 2007 .

[2]  Imre Z. Ruzsa,et al.  Diameter of sets and measure of sumsets , 1991 .

[3]  Noga Alon,et al.  Paul Erdős and Probabilistic Reasoning , 2013 .

[4]  A. Scott,et al.  Ann Arbor , 1980 .

[5]  P. Erdös Problems and results on combinatorial number theory III , 1977 .

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Itziar Bardaji Goikoetxea Structure of sets with small sumset and applications , 2008 .

[8]  V. V. Buldygin,et al.  Brunn-Minkowski inequality , 2000 .

[9]  G. Freiman Foundations of a Structural Theory of Set Addition , 2007 .

[10]  P. Erdos Extremal Problems in Number Theory , 2001 .

[11]  K. Fernow New York , 1896, American Potato Journal.

[12]  Y. Stanchescu On addition of two distinct sets of integers , 1996 .

[13]  V. Lev Optimal Representations by Sumsets and Subset Sums , 1997 .

[14]  The abelian arithmetic regularity lemma , 2016, 1606.09303.

[15]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[16]  E. Chong,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[17]  J. Bourgain Estimates related to sumfree subsets of sets of integers , 1997 .

[18]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[19]  Ben Green,et al.  Sum-free sets in abelian groups , 2003 .

[20]  Ben Green,et al.  QUADRATIC UNIFORMITY OF THE MOBIUS FUNCTION , 2006, math/0606087.

[21]  N. Alon,et al.  A Tribute to Paul Erdős: Sum-free subsets , 1990 .

[22]  András Sárközy,et al.  Finite addition theorems, I , 1989 .

[23]  Ben Green,et al.  An Arithmetic Regularity Lemma, An Associated Counting Lemma, and Applications , 2010, 1002.2028.

[24]  M. Kolountzakis Some Applications of Probability to Additive Number Theory and Harmonic Analysis , 1996 .

[25]  A. M. Macbeath,et al.  On measure of sum sets II. The sum-theorem for the torus , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  P. Erdos Problems and results in combinatorial number theory , 1973 .

[27]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[28]  Mark Lewko An Improved Upper Bound for the Sum-free Subset Constant , 2010 .

[29]  Ben Green,et al.  Sets with Small Sumset and Rectification , 2004, math/0403338.