An Interdependent Metabolic Patchwork in the Nested Symbiosis of Mealybugs

Highly reduced genomes of 144-416 kilobases have been described from nutrient-provisioning bacterial symbionts of several insect lineages [1-5]. Some host insects have formed stable associations with pairs of bacterial symbionts that live in specialized cells and provide them with essential nutrients; genomic data from these systems have revealed remarkable levels of metabolic complementarity between the symbiont pairs [3, 4, 6, 7]. The mealybug Planococcus citri (Hemiptera: Pseudococcidae) contains dual bacterial symbionts existing with an unprecedented organization: an unnamed gammaproteobacteria, for which we propose the name Candidatus Moranella endobia, lives inside the betaproteobacteria Candidatus Tremblaya princeps [8]. Here we describe the complete genomes and metabolic contributions of these unusual nested symbionts. We show that whereas there is little overlap in retained genes involved in nutrient production between symbionts, several essential amino acid pathways in the mealybug assemblage require a patchwork of interspersed gene products from Tremblaya, Moranella, and possibly P. citri. Furthermore, although Tremblaya has the smallest cellular genome yet described, it contains a genomic inversion present in both orientations in individual insects, starkly contrasting with the extreme structural stability typical of highly reduced bacterial genomes [4, 9, 10].

[1]  Y. Inagaki,et al.  Evolution of the eukaryotic translation termination system: origins of release factors. , 2000, Molecular biology and evolution.

[2]  Phat L Tran,et al.  Metabolic Complementarity and Genomics of the Dual Bacterial Symbiosis of Sharpshooters , 2006, PLoS biology.

[3]  N. Moran,et al.  Parallel genomic evolution and metabolic interdependence in an ancient symbiosis , 2007, Proceedings of the National Academy of Sciences.

[4]  C. V. Dohlen,et al.  Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts , 2001, Nature.

[5]  M. Shimada,et al.  Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  C. V. von Dohlen,et al.  Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts. , 2001, Nature.

[7]  P. Buchner Endosymbiosis of Animals with Plant Microorganisms , 1965 .

[8]  Hajime Ishikawa,et al.  The 160-Kilobase Genome of the Bacterial Endosymbiont Carsonella , 2006, Science.

[9]  H. Ochman,et al.  The Nature and Dynamics of Bacterial Genomes , 2006, Science.

[10]  M. Shimada,et al.  Infection Dynamics of Coexisting Beta- and Gammaproteobacteria in the Nested Endosymbiotic System of Mealybugs , 2008, Applied and Environmental Microbiology.

[11]  Ernest Szeto,et al.  Symbiosis insights through metagenomic analysis of a microbial consortium. , 2006, Nature Reviews Microbiology.

[12]  W. Reznikoff,et al.  Mobile DNA in obligate intracellular bacteria , 2005, Nature Reviews Microbiology.

[13]  P. Degnan,et al.  Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. , 2005, Genome research.

[14]  C. Hodgson,et al.  A subfamily‐level classification of mealybugs (Hemiptera: Pseudococcidae) based on integrated molecular and morphological data , 2008 .

[15]  P. Gullan,et al.  Secondary (gamma-Proteobacteria) endosymbionts infect the primary (beta-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. , 2002, Applied and environmental microbiology.

[16]  P. Gullan,et al.  Secondary (γ-Proteobacteria) Endosymbionts Infect the Primary (β-Proteobacteria) Endosymbionts of Mealybugs Multiple Times and Coevolve with Their Hosts , 2002, Applied and Environmental Microbiology.

[17]  C. Kurland,et al.  Reductive evolution of resident genomes. , 1998, Trends in microbiology.

[18]  N. Moran,et al.  Convergent evolution of metabolic roles in bacterial co-symbionts of insects , 2009, Proceedings of the National Academy of Sciences.

[19]  N. Moran,et al.  Aphid genome expression reveals host–symbiont cooperation in the production of amino acids , 2011, Proceedings of the National Academy of Sciences.

[20]  A. Moya,et al.  The Striking Case of Tryptophan Provision in the Cedar Aphid Cinara cedri , 2008, Journal of bacteriology.

[21]  Andrés Moya,et al.  The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii , 2007, BMC Evolutionary Biology.

[22]  N. Moran,et al.  Origin of an Alternative Genetic Code in the Extremely Small and GC–Rich Genome of a Bacterial Symbiont , 2009, PLoS genetics.

[23]  S. Colella,et al.  Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola , 2010, Insect molecular biology.

[24]  M. Hattori,et al.  Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS , 2000, Nature.

[25]  J. Andersson,et al.  Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes. , 2001, Molecular biology and evolution.

[26]  P. Baumann,et al.  The Genetic Properties of the Primary Endosymbionts of Mealybugs Differ from Those of Other Endosymbionts of Plant Sap-Sucking Insects , 2002, Applied and Environmental Microbiology.

[27]  S. Richards,et al.  Widespread Lateral Gene Transfer from Intracellular Bacteria to Multicellular Eukaryotes , 2007, Science.

[28]  S. Bordenstein,et al.  Correlations Between Bacterial Ecology and Mobile DNA , 2010, Current Microbiology.

[29]  P. Baumann Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. , 2005, Annual review of microbiology.

[30]  N. Moran,et al.  Deletional bias and the evolution of bacterial genomes. , 2001, Trends in genetics : TIG.

[31]  L. Ponnala,et al.  Large-Scale Label-Free Quantitative Proteomics of the Pea aphid-Buchnera Symbiosis* , 2011, Molecular & Cellular Proteomics.

[32]  N. Moran,et al.  Functional Convergence in Reduced Genomes of Bacterial Symbionts Spanning 200 My of Evolution , 2010, Genome biology and evolution.

[33]  Samuel H. Payne,et al.  Retention and Loss of Amino Acid Biosynthetic Pathways Based on Analysis of Whole-Genome Sequences , 2006, Eukaryotic Cell.

[34]  Henry Huang,et al.  Homologous recombination in Escherichia coli: dependence on substrate length and homology. , 1986, Genetics.

[35]  A. Moya,et al.  Why are the genomes of endosymbiotic bacteria so stable? , 2003, Trends in genetics : TIG.

[36]  N. Moran,et al.  A genomic perspective on nutrient provisioning by bacterial symbionts of insects , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Evgeny M. Zdobnov,et al.  Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle , 2010, Proceedings of the National Academy of Sciences.

[38]  J. McCutcheon The bacterial essence of tiny symbiont genomes. , 2010, Current opinion in microbiology.

[39]  Andrés Moya,et al.  A Small Microbial Genome: The End of a Long Symbiotic Relationship? , 2006, Science.

[40]  A. Douglas,et al.  MYCETOCYTE SYMBIOSIS IN INSECTS , 1989, Biological reviews of the Cambridge Philosophical Society.

[41]  N. Moran,et al.  Bacterial Genes in the Aphid Genome: Absence of Functional Gene Transfer from Buchnera to Its Host , 2010, PLoS genetics.

[42]  N. Moran,et al.  Lifestyle evolution in symbiotic bacteria: insights from genomics. , 2000, Trends in ecology & evolution.

[43]  W. Martin,et al.  Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes , 2004, Nature Reviews Genetics.

[44]  J. Sandström,et al.  Amino acid composition of phloem sap and the relation to intraspecific variation in pea aphid (Acyrthosiphon pisum) performance , 1994 .

[45]  C. Sella,et al.  Properties of subcloned subunits of bacterial acetohydroxy acid synthases , 1992, Journal of bacteriology.

[46]  Alfonso Valencia,et al.  Reductive genome evolution in Buchnera aphidicola , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  N. Moran,et al.  50 Million Years of Genomic Stasis in Endosymbiotic Bacteria , 2002, Science.