Studies on Self-organizing, Collective, and Cooperative Phenomena in Natural and Arti cial Computing

[6] Jose Aguilar and Mariela Cerrada. Fuzzy classifier system and genetic programming on system identification problems. In Lee Spector, Erik D. Goodman, Annie Wu, W.B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund Burke, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pages 1245–1251, San Francisco, California, USA, 7-11 July 2001. Morgan Kaufmann.

[1]  J. E. Gibson,et al.  Adaptive Learning Systems , 2017 .

[2]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[3]  John H. Holland,et al.  Cognitive systems based on adaptive algorithms , 1977, SGAR.

[4]  Stephen F. Smith,et al.  A learning system based on genetic adaptive algorithms , 1980 .

[5]  Lashon B. Booker,et al.  Intelligent Behavior as an Adaptation to the Task Environment , 1982 .

[6]  Stephen F. Smith,et al.  Flexible Learning of Problem Solving Heuristics Through Adaptive Search , 1983, IJCAI.

[7]  Stewart W. Wilson On the Retino-Cortical Mapping , 1983, Int. J. Man Mach. Stud..

[8]  J. D. Schaffer,et al.  Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelligence, optimization, adaptation, pattern recognition) , 1984 .

[9]  John H. Holland,et al.  Genetic Algorithms and Adaptation , 1984 .

[10]  Stephanie Forrest,et al.  A Study of Parallelism in the Classifier System and Its Application to Classification in Kl-One Semantic Networks (Artificial Intelligence, Fine-Grained) , 1985 .

[11]  David E. Goldberg,et al.  Dynamic System Control Using Rule Learning and Genetic Algorithms , 1985, IJCAI.

[12]  Stewart W. Wilson Knowledge Growth in an Artificial Animal , 1985, ICGA.

[13]  Adaptive 'Cortical' Pattern Recognition , 1985, ICGA.

[14]  Thomas H. Westerdale,et al.  The Bucket Brigade Is Not Genetic , 1985, International Conference on Genetic Algorithms.

[15]  Lashon B. Booker,et al.  Improving the Performance of Genetic Algorithms in Classifier Systems , 1985, ICGA.

[16]  John H. Holland,et al.  Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems , 1995 .

[17]  J. Holland A mathematical framework for studying learning in classifier systems , 1986 .

[18]  Thomas H. Westerdale,et al.  A Reward Scheme for Production Systems with Overlapping Conflict Sets , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  Stephanie Forrest,et al.  The Classifier System: A Computational Model that Supports Machine Intelligence , 1986, ICPP.

[20]  Stewart W. Wilson The Genetic Algorithm and Simulated Evolution , 1987, ALIFE.

[21]  Stewart W. Wilson Quasi-Darwinian Learning in a Classifier System , 1987 .

[22]  Stephen F. Smith,et al.  A Genetic System for Learning Models of Consumer Choice , 1987, ICGA.

[23]  J. Grefenstette The Evolution of Strategies for Multi-agent Environments , 1987 .

[24]  Stewart W. Wilson Hierarchical Credit Allocation in a Classifier System , 1987, IJCAI.

[25]  David Perry Greene Automated Knowledge Acquisition: Overcoming the Expert System Bottleneck , 1987, ICIS.

[26]  John J. Grefenstette,et al.  Csm: a genetic classifier system with memory for learning by analogy , 1987 .

[27]  Stewart W. Wilson The Genetic Algorithm and Biological Development , 1987, ICGA.

[28]  John H. Holland,et al.  Induction: Processes of Inference, Learning, and Discovery , 1987, IEEE Expert.

[29]  Sara J. Graves,et al.  Improving performance of an electrical power expert system with genetic algorithms , 1988, IEA/AIE '88.

[30]  Gunar E. Liepins,et al.  Machine learning applications to job shop scheduling , 1988, IEA/AIE '88.

[31]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[32]  John H. Holland,et al.  Empirical studies of default hierarchies and sequences of rules in learning classifier systems , 1988 .

[33]  George G. Robertson,et al.  Population Size in classifier Systems , 1988, ML.

[34]  Stewart W. Wilson Bid Competition and Specificity Reconsidered , 1988, Complex Syst..

[35]  Lawrence Davis,et al.  Mapping Classifier Systems Into Neural Networks , 1988, NIPS.

[36]  S. Sen,et al.  Sequential Boolean function learning by classifier system , 1988, IEA/AIE '88.

[37]  Erik D. Goodman,et al.  Midgard: A Genetic Approach to Adaptive Load Balancing for Distributed Systems , 1988, ML.

[38]  Lawrence Davis,et al.  Classifier Systems with Hamming Weights , 1988, ML.

[39]  David E. Goldberg,et al.  Two analysis tools to describe the operation of classifier systems , 1989 .

[40]  Gunar E. Liepins,et al.  Alternatives for Classifier System Credit Assignment , 1989, IJCAI.

[41]  David E. Goldberg,et al.  A Critical Review of Classifier Systems , 1989, ICGA.

[42]  Lashon B. Booker,et al.  Triggered Rule Discovery in Classifier Systems , 1989, ICGA.

[43]  John J. Grefenstette,et al.  Learning by Analogy in Genetic Classifier Systems , 1989, ICGA.

[44]  D. Huang Credit-apportionment in rule-based systems: problem analysis and algorithm synthesis , 1989 .

[45]  D.E. Goldberg,et al.  Classifier Systems and Genetic Algorithms , 1989, Artif. Intell..

[46]  K. Holyoak,et al.  A Theory of Conditioning: Inductive Learning within Rule-Based Default Hierarchies. , 1989 .

[47]  Jae C. Oh,et al.  Image learning classifier system using genetic algorithms , 1989, Proceedings of the IEEE National Aerospace and Electronics Conference.

[48]  Terence C. Fogarty,et al.  An Incremental Genetic Algorithm for Real-Time Learning , 1989, ML.

[49]  Dijia Huang,et al.  A framework for the credit-apportionment process in rule-based systems , 1989, IEEE Trans. Syst. Man Cybern..

[50]  Piet Spiessens,et al.  PCS: A Classifier System that Builds a Predictive Internal World Model , 1990, ECAI.

[51]  In Schoenauer,et al.  Parallel Problem Solving from Nature , 1990, Lecture Notes in Computer Science.

[52]  Kirk Twardowski Implementation of a genetic algorithm based associative classifier system (ACS) , 1990, [1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence.

[53]  Andreas Schachtner,et al.  A Classifier System with Integrated Genetic Operators , 1990, PPSN.

[54]  Manuel Valenzuela-Rendón The Fuzzy Classifier System: Motivations and first Results , 1990, PPSN.

[55]  Stewart W. Wilson Perceptron redux: emergence of structure , 1990 .

[56]  Hugues Bersini,et al.  Hints for Adaptive Problem Solving Gleaned from Immune Networks , 1990, PPSN.

[57]  John J. Grefenstette,et al.  Improving tactical plans with genetic algorithms , 1990, [1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence.

[58]  Ellen R. McGrattan,et al.  Money as a medium of exchange in an economy with artificially intelligent agents , 1990 .

[59]  Lashon B. Booker,et al.  Representing Attribute-Based Concepts in a Classifier System , 1990, FOGA.

[60]  Sandip Sen,et al.  Newboole: A Fast GBML System , 1990, ML.

[61]  John J. Grefenstette,et al.  Simulation-Assisted Learning by Competition: Effects of Noise Differences Between Training Model and Target Environment , 1990, ML.

[62]  Stewart W. Wilson The animat path to AI , 1991 .

[63]  M. Dorigo,et al.  Organisation of robot behaviour through genetic learning processes , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[64]  Alexandre Parodi,et al.  An Efficient Classifier System and Its Experimental Comparison with Two Representative Learning Methods on Three Medical Domains , 1991, ICGA.

[65]  Marco Dorigo,et al.  AutonoMouse: An Experiment in Grounded Behaviors , 1991 .

[66]  Kenneth A. De Jong,et al.  Learning Concept Classification Rules Using Genetic Algorithms , 1991, IJCAI.

[67]  Marco Dorigo New Perspectives about Default Hierarchies Formation in Learning Classifier Systems , 1991, AI*IA.

[68]  John Grefenstette The User''s Guide to SAMUEL, Version 1.3 , 1991 .

[69]  Maja J. Matarić A Comparative Analysis of Reinforcement Learning Methods , 1991 .

[70]  John J. Grefenstette,et al.  Learning the Persistence of Actions in Reactive Control Rules , 1991, ML.

[71]  Manuel Valenzuela-Rendón,et al.  The Fuzzy Classifier System: A Classifier System for Continuously Varying Variables , 1991, ICGA.

[72]  Marco Dorigo,et al.  Message-Based Bucket Brigade: An Algorithm for the Apportionment of Credit Problem , 1991, EWSL.

[73]  Marco Dorigo,et al.  A Parallel Environment for Learning Systems , 1991 .

[74]  Robert Elliott Smith Default hierarchy formation and memory exploitation in learning classifier systems , 1991 .

[75]  Gunar E. Liepins,et al.  Credit assignment and discovery in classifier systems , 1991, Int. J. Intell. Syst..

[76]  Philip R. Thrift,et al.  Fuzzy Logic Synthesis with Genetic Algorithms , 1991, ICGA.

[77]  Lashon B. Booker,et al.  Instinct as an inductive bias for learning behavioral sequences , 1991 .

[78]  S. W. Wilson,et al.  Toward a GA Solution to the Discovery Problem , 1992 .

[79]  Stewart W. Wilson Classifier System Mapping of Real Vectors , 1992 .

[80]  John J. Grefenstette Learning Decision Strategies with Genetic Algorithms , 1992, AII.

[81]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[82]  John J. Grefenstette,et al.  Using a Genetic Algorithm to Learn Behaviors for Autonomous Vehicles , 1992 .

[83]  Marco Dorigo,et al.  Using transputers to increase speed and flexibility of genetics-based machine learning systems , 1992, Microprocess. Microprogramming.

[84]  Alan S. Perelson,et al.  Population Diversity in an Immune System Model: Implications for Genetic Search , 1992, FOGA.

[85]  Marco Colombetti,et al.  Robot shaping: developing situated agents through learning , 1992 .

[86]  Andrew Whinston,et al.  Applying Adaptive Credit Assignment Algorithm for the Learning Classifier System Based upon the Genetic Algorithm , 1992 .

[87]  David E. Goldberg,et al.  Reinforcement learning with classifier systems: Adaptive default hierarchy formation , 1992, Appl. Artif. Intell..

[88]  David E. Goldberg,et al.  What Makes a Problem Hard for a Classifier System , 1992 .

[89]  Alwyn Barry The emergence of high level structure in classifier systems - a proposal , 1993 .

[90]  Joachim Stender,et al.  Parallel Genetic Algorithms: Introduction and Overview of Current Research , 1993 .

[91]  Marco Dorigo,et al.  Genetics-based machine learning and behavior-based robotics: a new synthesis , 1993, IEEE Trans. Syst. Man Cybern..

[92]  Derek F. Yates,et al.  An Investigation into Possible Causes of and Solutions to Rule Strength Distortion Due to the Bucket Brigade Algorithm , 1993, ICGA.

[93]  Andreas Geyer-Schulz Fuzzy Classifier Systems , 1993 .

[94]  Mohamad H. Hassoun,et al.  Regulator Control via Genetic Search Assisted Reinforcement , 1993, ICGA.

[95]  J. Biondi,et al.  Robustness and Evolution in an Adaptive System Application on Classification Task , 1993 .

[96]  Marco Dorigo,et al.  Genetic and Non-Genetic Operators in ALECSYS , 1993, Evolutionary Computation.

[97]  Alan S. Perelson,et al.  Searching for Diverse, Cooperative Populations with Genetic Algorithms , 1993, Evolutionary Computation.

[98]  Robert E. Smith Genetic learning in rule-based and neural systems , 1993 .

[99]  Marco Dorigo,et al.  Gli Algoritmi Genetici, i Sistemi a Classificatori e il Problema dell'Animat , 1993 .

[100]  Dave Cliff,et al.  Adding "Foveal Vision" to Wilson's Animat , 1993, Adapt. Behav..

[101]  N. R. Ball,et al.  Towards the Development of Cognitive Maps in Classifier Systems , 1993 .

[102]  Gilles Venturini,et al.  SIA: A Supervised Inductive Algorithm with Genetic Search for Learning Attributes based Concepts , 1993, ECML.

[103]  Robert E. Smith,et al.  Memory Exploitation in Learning Classifier Systems , 1994, Evolutionary Computation.

[104]  John J. Grefenstette,et al.  Case-Based Anytime Learning , 1994 .

[105]  Uwe Hartmann On the Complexity of Learning in Classifier Systems , 1994, PPSN.

[106]  T.C. Fogarty,et al.  A delayed-action classifier system for learning in temporal environments , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[107]  Larry Bull,et al.  Evolving cooperative communicating classifier systems , 1994 .

[108]  Lorenza Saitta,et al.  Learning Disjunctive Concepts by Means of Genetic Algorithms , 1994, ICML.

[109]  Reinhard Männer,et al.  Parallel Problem Solving from Nature — PPSN III , 1994, Lecture Notes in Computer Science.

[110]  Derek F. Yates,et al.  Evolutionary Stability in Simple Classifier Systems , 1994, Evolutionary Computing, AISB Workshop.

[111]  Marco Colombetti,et al.  The Role of the Trainer in Reinforcement Learning , 1994, COLT 1994.

[112]  Stephen F. Smith,et al.  Using Coverage as a Model Building Constraint in Learning Classifier Systems , 1994, Evolutionary Computation.

[113]  Sandip Sen,et al.  A tale of two representations , 1994, IEA/AIE '94.

[114]  D. Cliff From animals to animats , 1994, Nature.

[115]  Marco Colombetti,et al.  The Effect of Sensory Information on Reinforcement Learning by a Robot Arm , 1994 .

[116]  Melanie Mitchell,et al.  Genetic Algorithms and Artificial Life , 1994, Artificial Life.

[117]  Marco Colombetti,et al.  Robot Shaping: Developing Autonomous Agents Through Learning , 1994, Artif. Intell..

[118]  Gilles Venturini Apprentissage Adaptatif et Apprentisage Supervis? par Algorithme G?n?tique , 1994 .

[119]  Robert E. Smith,et al.  Is a Learning Classifier System a Type of Neural Network? , 1994, Evolutionary Computation.

[120]  Dave Cliff,et al.  Adding Temporary Memory to ZCS , 1994, Adapt. Behav..

[121]  John J. Grefenstette,et al.  An Evolutionary Approach to Learning in Robots. , 1994 .

[122]  Marco Colombetti,et al.  Training Agents to Perform Sequential Behavior , 1994, Adapt. Behav..

[123]  Richard J. Bauer,et al.  Genetic Algorithms and Investment Strategies , 1994 .

[124]  Andrea Bonarini,et al.  Evolutionary learning of general fuzzy rules with biased evaluation functions: competition and cooperation , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[125]  Sandip Sen,et al.  Using real-valued genetic algorithms to evolve rule sets for classification , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[126]  Gerhard Weiß,et al.  Hierarchical Chunking in Classifier Systems , 1994, AAAI.

[127]  Stewart W. Wilson ZCS: A Zeroth Level Classifier System , 1994, Evolutionary Computation.

[128]  Larry Bull,et al.  Parallel evolution of communicating classifier systems , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[129]  John J. Grefenstette,et al.  EVOLUTIONARY ALGORITHMS IN ROBOTICS , 1994 .

[130]  Paweł Cichosz,et al.  Reinforcement Learning Algorithms Based on the Methods of Temporal Differences , 1994 .

[131]  David E. Goldberg,et al.  Implicit Niching in a Learning Classifier System: Nature's Way , 1994, Evolutionary Computation.

[132]  Kirk Twardowski,et al.  An associative architecture for genetic algorithm-based machine learning , 1994, Computer.

[133]  J. Grefenstette,et al.  EVOLVING ROBOT BEHAVIORS , 1994 .

[134]  B. G. de Boer,et al.  Classifier systems: a useful approach to machine learning? , 1994 .

[135]  Takao Terano,et al.  On-the-Fly Knowledge Base Refinement by a Classifier System , 1994, AI Commun..

[136]  Yoshiki Uchikawa,et al.  An efficient finding of fuzzy rules using a new approach to genetic based machine learning , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[137]  Yeong-Joon Kim,et al.  Multi-rule-set Decision-making Schemes for a Genetic Algorithm Learning Environment for Classification Tasks , 1995, Evolutionary Programming.

[138]  Marco Colombetti,et al.  Evolutionary Learning for Intelligent Automation: A Case Study , 1995, Intell. Autom. Soft Comput..

[139]  Larry Bull,et al.  Evolving multi-agent systems , 1995 .

[140]  Antonina Starita,et al.  PANIC: A Parallel Evolutionary Rule Based System , 1995, Evolutionary Programming.

[141]  Nicolaas J. Vriend,et al.  Self-organization of markets: An example of a computational approach , 1995 .

[142]  A. H. Gilbert,et al.  Adaptive Learning of Process Control and Profit Optimization Using a Classifier System , 1995, Evolutionary Computation.

[143]  J. Mulawka,et al.  Gbql: a Novel Genetics-based Reinforcement Learning Architecture , 1995 .

[144]  J. Muruzabal,et al.  Fuzzy and probabilistic reasoning in simple learning classifier systems , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[145]  Patrick Tufts,et al.  Dynanfic Classifiers: Genetic Programnfing and Classifier Systems , 1995 .

[146]  Larry Bull,et al.  Adaptive Gait Acquisition Using Multi-Agent Learning for Wall Climbing Robots , 1995 .

[147]  Jukka Hekanaho,et al.  Symbiosis in Multimodal Concept Learning , 1995, ICML.

[148]  Lawrence Bull Artificial symbiology : evolution in cooperative multi-agent environments , 1995 .

[149]  A. Rustichini,et al.  RULES OF THUMB AND DYNAMICPROGRAMMING , 1995 .

[150]  Jason R. Wilcox,et al.  Organizational Learning Within A Learning Classifier System , 1995 .

[151]  Jörg Biethahn,et al.  Determining a Good Inventory Policy with a Genetic Algorithm , 1995 .

[152]  Filippo Neri,et al.  Search-Intensive Concept Induction , 1995, Evolutionary Computation.

[153]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[154]  Larry Bull,et al.  Optimising individual control rules and multiple communicating rule-based control systems with parallel distributed genetic algorithms , 1995 .

[155]  Stewart W. Wilson Classifier Fitness Based on Accuracy , 1995, Evolutionary Computation.

[156]  M. Dorigo ALECSYS and the AutonoMouse: Learning to Control a Real Robot by Distributed Classifier Systems , 1995, Machine Learning.

[157]  Franz Oppacher,et al.  The Evolution of Hierarchical Representations , 1995, ECAL.

[158]  Van Belle,et al.  A new approach to genetic-based automatic feature discovery , 1995 .

[159]  Philippe Collard,et al.  Learning Disjunctive Normal Forms in a Dual Classifier System (Extended Abstract) , 1995, ECML.

[160]  F. Serendynski,et al.  Learning classifier systems in multi-agent environments , 1995 .

[161]  Sandip Sen,et al.  Multiagent Coordination with Learning Classifier Systems , 1995, Adaption and Learning in Multi-Agent Systems.

[162]  Andrea Bonarini,et al.  Extending Q-learning to Fuzzy Classifier Systems , 1995, AI*IA.

[163]  Will N. Browne,et al.  The implementation of a learning classifier system for parameter identification by signal processing of data from steel strip downcoilers , 1996 .

[164]  Explore/Exploit Strategies in Autonomy , 1996 .

[165]  R. Palmer,et al.  Asset Pricing Under Endogenous Expectations in an Artificial Stock Market , 1996 .

[166]  Ian Wright,et al.  Reinforcement Learning and Animat Emotions , 1996 .

[167]  Hisao Ishibuchi,et al.  Genetic-algorithm-based approaches to the design of fuzzy systems for multi-dimensional pattern classification problems , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[168]  Alistair Munro,et al.  Evolving fuzzy rule based controllers using genetic algorithms , 1996, Fuzzy Sets Syst..

[169]  Robert A. Richards,et al.  A Learning Classifier System for Three-Dimensional Shape Optimization , 1996, PPSN.

[170]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[171]  John H. Holmes,et al.  A Genetics-Based Machine Learning Approach to Knowledge Discovery in Clinical Data. , 1996 .

[172]  Alistair Munro,et al.  Distributed adaptive routing control in communication networks using a temporal fuzzy classifier system , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[173]  Gerhard Weiss,et al.  An action-oriented perspective of learning in classifier systems , 1996, J. Exp. Theor. Artif. Intell..

[174]  Sandip Sen,et al.  Modeling Human Categorization By a Simple Classifier System , 1996 .

[175]  Jean-Arcady Meyer,et al.  Hierarchical Map Building and Self-Positioning with MonaLysa , 1996, Adapt. Behav..

[176]  Jean-Arcady Meyer,et al.  Learning reactive and planning rules in a motivationally autonomous animat , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[177]  W. Nachtigall,et al.  Bionik – Natur als Vorbild , 1996 .

[178]  Marco Colombetti,et al.  Robot shaping: The Hamster Experiment , 1996 .

[179]  Andreas Geyer-Schulz,et al.  Fuzzy Rule-Based Expert Systems and Genetic Machine Learning , 1996 .

[180]  Andrea Bonarini Delayed Reinforcement , Fuzzy Q-Learning and Fuzzy Logic Controllers , 1996 .

[181]  Andrea Bonarini,et al.  Evolutionary Learning of Fuzzy rules: competition and cooperation , 1996 .

[182]  Larry Bull,et al.  Evolutionary Computing in Multi-Agent Environments: Specification and Symbiogenesis , 1996, PPSN.

[183]  Wolfgang Stolzmann Learning Classifier Systems using the Cognitive Mechanism of Anticipatory Behavioral Control , 1996 .

[184]  Marco Colombetti,et al.  Verso un'ingegneria del comportamento , 1996 .

[185]  Ashok D. Belegundu,et al.  A new genetic algorithm for multiobjective optimization , 1996 .

[186]  Marco Colombetti,et al.  Behavior analysis and training-a methodology for behavior engineering , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[187]  Filippo Neri,et al.  Exploring the Power of Genetic Search in Learning Symbolic Classifiers , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[188]  S. Wilson Generalization in XCS , 1996 .

[189]  Robert A. Richards,et al.  Zeroth-order shape optimization utilizing a learning classifier system , 1996 .

[190]  J. Holmes Evolution-assisted discovery of sentinel features in epidemiologic surveillance , 1996 .

[191]  Pier Luca Lanzi A Model of the Environment to Avoid Local Learning , 1997 .

[192]  Marco Colombetti,et al.  Robot Shaping: An Experiment in Behavior Engineering , 1997 .

[193]  Cezary Z. Janikow Genetic information learning , 1997 .

[194]  L. Marengo,et al.  A learning-to-forecast experiment on the foreign exchange market with a classifier system , 1997 .

[195]  Marco Colombetti,et al.  Reply to Dario Floreano's "Engineering Adaptive Behavior" , 1997, Adapt. Behav..

[196]  Robert E. Smith,et al.  An application of genetic algorithms to air combat maneuvering , 1997 .

[197]  Steven E. Phelan,et al.  USING ARTIFICIAL ADAPTIVE AGENTS TO EXPLORE STRATEGIC LANDSCAPES , 1997 .

[198]  Mark D. Plumbley,et al.  A new hillclimber for classifier systems , 1997 .

[199]  Jeffrey Horn,et al.  The nature of niching: genetic algorithms and the evolution of optimal, cooperative populations , 1997 .

[200]  Will N. Browne,et al.  A Practical Application of a Learning Classifier System in a Steel Hot Strip Mill , 1997, ICANNGA.

[201]  John J. Grefenstette,et al.  Learning to break things: Adaptive testing of intelligent controllers , 1997 .

[202]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[203]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[204]  T. Terano,et al.  Good solutions will emerge without a global objective function: applying organizational-learning oriented classifier system to printed circuit board design , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[205]  Marco Colombetti,et al.  Précis of Robot Shaping: An Experiment in Behavior Engineering , 1997, Adapt. Behav..

[206]  Terence C Fogarty Genetic algorithms for the optimization of combustion in multiple-burner furnaces and boiler plants , 1997 .

[207]  Stewart W. Wilson Generalization in Evolutionary Learning , 1997 .

[208]  Francine Federman,et al.  Representation of Music in a Learning Classifier System , 1997, ISMIS.

[209]  Paul Devine,et al.  Adaptation of Evolutionary Agents in Computational Ecologies , 1997, BCEC.

[210]  Andrea Bonarini,et al.  Learning to compose fuzzy behaviors for autonomous agents , 1997, Int. J. Approx. Reason..

[211]  Takao Terano,et al.  Amalyzing the Roles of Problem Solving and Learning in Organizational-Learning Oriented Classifier System , 1998, PRICAI.

[212]  Attilio Giordana,et al.  Learning Classification Programs: The Genetic Algorithm Approach , 1998, Fundam. Informaticae.

[213]  Marco Colombetti,et al.  Incremental Robot Shaping , 1998, Connect. Sci..

[214]  M. Valenzuela-Rendón Reinforcement learning in the fuzzy classifier system , 1998 .

[215]  Michèle Courant,et al.  Grounding Agents in EMud Artificial Worlds , 1998, Virtual Worlds.

[216]  Wolfgang Stolzmann Untersuchungen zur Adäquatheit des Postulats einer antizipativen Verhaltenssteuerung zur Erklärung von Verhalten mit ACSs , 1998 .

[217]  Larry Bull,et al.  A Corporate Classifier System , 1998, PPSN.

[218]  Akira Hayashi,et al.  Viewing Classifier Systems as Model Free Learning in POMDPs , 1998, NIPS.

[219]  David E. Goldberg,et al.  Toward a Control Map for Niching , 1998, FOGA.

[220]  Dipankar Dasgupta,et al.  Metacognition in Software Agents Using Classifier Systems , 1998, AAAI/IAAI.

[221]  C. J. Moore,et al.  Practical application of learning classifier system for downcoiler decision support in steel hot strip mill , 1998 .

[222]  David E. Goldberg,et al.  A Timing Analysis of Convergence to Fitness Sharing Equilibrium , 1998, PPSN.

[223]  T. H. Westerdale An approach to credit assignment in classifier systems , 1998, Complex..

[224]  G. Flake The Computational Beauty of Nature , 1998 .

[225]  Alistair Munro,et al.  Artificial evolution of fuzzy rule bases which represent time: A temporal fuzzy classifier system , 1998, Int. J. Intell. Syst..

[226]  Pier Luca Lanzi Adding memory to XCS , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[227]  Stewart W. Wilson Generalization in the XCS Classifier System , 1998 .

[228]  Larry Bull,et al.  On ZCS in Multi-agent Environments , 1998, PPSN.

[229]  David B. Fogel,et al.  An Introduction to Evolutionary Computation , 2022 .

[230]  Antonina Starita,et al.  Q-Learning and Redundancy Reduction in Classifier Systems with Internal State , 1998, ECML.

[231]  T. Kovacs XCS Classifier System Reliably Evolves Accurate, Complete, and Minimal Representations for Boolean Functions , 1998 .

[232]  Takao Terano,et al.  Multiagent reinforcement learning with organizational-learning oriented classifier system , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[233]  Hisao Ishibuchi,et al.  Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[234]  G. D. Smith,et al.  An Adaptive Agent Model for Generator Company Bidding in the UK Power Pool , 1999, Artificial Evolution.

[235]  Luciano Sánchez,et al.  Evolving Fuzzy Rule Based Classifiers with GA-P: A Grammatical Approach , 1999, EuroGP.

[236]  Pier Luca Lanzi,et al.  An Analysis of Generalization in the XCS Classifier System , 1999, Evolutionary Computation.

[237]  Toshiharu Taura,et al.  A computational model of a viewpoint-forming process in a hierarchical classifier system , 1999 .

[238]  Tim Kovacs,et al.  A Learning Classifier Systems Bibliography , 1999, Learning Classifier Systems.

[239]  Pier Luca Lanzi,et al.  A Roadmap to the Last Decade of Learning Classifier System Research , 1999, Learning Classifier Systems.

[240]  K. Takadama Can Multiagents Learn in Organization? Analyzing Organizational-Learning Oriented Classi er System , 1999 .

[241]  Cédric Sanza,et al.  LEARNING IN REAL-TIME ENVIRONMENT BASED ON CLASSIFIER SYSTEMS , 1999 .

[242]  Elisabet Golobardes,et al.  Automatic diagnosis with genetic algorithms and case-based reasoning , 1999, Artif. Intell. Eng..

[243]  Larry Bull,et al.  Design of a Traffic Junction Controller Using Classifier Systems and Fuzzy Logic , 1999, Fuzzy Days.

[244]  Takao Terano,et al.  Toward Emergent Problem Solving by Distributed Classifier Systems Based on Organizational Learning , 1999 .

[245]  Robert E. Smith,et al.  What Can I Do with a Learning Classifier System , 1999 .

[246]  John J. Grefenstette,et al.  Evolutionary Algorithms for Reinforcement Learning , 1999, J. Artif. Intell. Res..

[247]  Jiefu Shi Genetic Algorithms for Game Playing , 1999 .

[248]  Andrea Bonarini Comparing Reinforcement Learning Algorithms Applied to Crisp and Fuzzy Learning Classifier Systems , 1999, GECCO.

[249]  Stewart W. Wilson State of XCS Classifier System Research , 1999, Learning Classifier Systems.

[250]  Andrea Bonarini,et al.  An Introduction to Learning Fuzzy Classifier Systems , 1999, Learning Classifier Systems.

[251]  Takao Terano,et al.  Agent-based model toward organizational computing: from organizational learning to genetics-based machine learning , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[252]  Andrew Stephen Tomlinson Corporate classifier systems , 1999 .

[253]  Tomoharu Nakashima,et al.  A fuzzy genetics-based machine learning method for designing linguistic classification systems with high comprehensibility , 1999, ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378).

[254]  Marco Colombetti,et al.  Evolutionary Computation in Behavior Engineering , 1999 .

[255]  Stewart W. Wilson Get Real! XCS with Continuous-Valued Inputs , 1999, Learning Classifier Systems.

[256]  Lashon B. Booker,et al.  Do We Really Need to Estimate Rule Utilities in Classifier Systems? , 1999, Learning Classifier Systems.

[257]  Cédric Sanza,et al.  Adaptive behavior for cooperation: a virtual reality application , 1999, 8th IEEE International Workshop on Robot and Human Interaction. RO-MAN '99 (Cat. No.99TH8483).

[258]  Takao Terano,et al.  Making Organizational Learning Operational: Implications from Learning Classifier Systems , 1999, Comput. Math. Organ. Theory.

[259]  Larry Bull,et al.  On using ZCS in a Simulated Continuous Double-Auction Market , 1999, GECCO.

[260]  H. Uhlig,et al.  Rules of Thumb versus Dynamic Programming , 1999 .

[261]  R. Palmer,et al.  Time series properties of an artificial stock market , 1999 .

[262]  Andrea Bonarini,et al.  Fuzzy and Crisp Representations of Real-Valued Input for Learning Classifier Systems , 1999, Learning Classifier Systems.

[263]  D. Goldberg,et al.  First Cognitive Capabilities in the Anticipatory Classifier System , 2000 .

[264]  Larry Bull,et al.  Simple Markov Models of the Genetic Algorithm in Classifier Systems: Accuracy-Based Fitness , 2000, IWLCS.

[265]  Robert E. Smith,et al.  Classifier systems in combat: two-sided learning of maneuvers for advanced fighter aircraft , 2000 .

[266]  D. Goldberg,et al.  Investigating Generalization in the Anticipatory Classifier System , 2000, PPSN.

[267]  Tim Kovacs,et al.  Towards a Theory of Strong Overgeneral Classifiers , 2000, FOGA.

[268]  Stewart W. Wilson,et al.  Learning Classifier Systems, From Foundations to Applications , 2000 .

[269]  Peter Ross,et al.  Strength and Money: An LCS Approach to Increasing Returns , 2000, IWLCS.

[270]  Larry Bull,et al.  A Communication Architecture for Multi-agent Learning Systems , 2000, EvoWorkshops.

[271]  Martin V. Butz,et al.  Probability-Enhanced Predictions in the Anticipatory Classifier System , 2000, IWLCS.

[272]  Takao Terano,et al.  Learning Classifier Systems Meet Multiagent Environments , 2000, IWLCS.

[273]  C. K. Mohan,et al.  ClaDia: a fuzzy classifier system for disease diagnosis , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[274]  Dennis R. Durbin,et al.  The learning classifier system: an evolutionary computation approach to knowledge discovery in epidemiologic surveillance , 2000, Artif. Intell. Medicine.

[275]  Will N. Browne,et al.  An Industry-based Development of the Learning Classifier System Technique , 2000 .

[276]  Jalal Baghdadchi A Classifier Based Learning Model for Intelligent Agents , 2000, GECCO.

[277]  Olivier Sigaud,et al.  YACS: Combining Dynamic Programming with Generalization in Classifier Systems , 2000, IWLCS.

[278]  Stewart W. Wilson,et al.  Toward Optimal Classifier System Performance in Non-Markov Environments , 2000, Evolutionary Computation.

[279]  Mário Rui Gomes,et al.  A Study on the Evolution of Learning Classifier Systems , 2000, IWLCS.

[280]  Kwong-Sak Leung,et al.  Data Mining Using Grammar Based Genetic Programming and Applications , 2000 .

[281]  Will N. Browne,et al.  An industrial Learning Classifier System: the importance of pre-processing real data and choice of alphabet , 2000 .

[282]  Tim Kovacs,et al.  What Makes a Problem Hard for XCS? , 2000, IWLCS.

[283]  D. Goldberg,et al.  Introducing a Genetic Generalization Pressure to the Anticipatory Classifier System Part 2: Performa , 2000 .

[284]  Hisao Ishibuchi,et al.  A hybrid fuzzy GBML algorithm for designing compact fuzzy rule-based classification systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[285]  Keiki Takadama,et al.  How to autonomously decide boundary between self and others? , 2000, 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies.

[286]  Tetsuya Higuchi,et al.  Hardware realizations of evolutionary algorithms , 2000 .

[287]  Larry Bull,et al.  Distributed Learning Control of Traffic Signals , 2000, EvoWorkshops.

[288]  Takao Terano,et al.  Co-Evolution of Multiagents via Organizational-Learning Classifier System and its application to Marketing Simulation , 2000, PACIS.

[289]  Igor Durdanovic,et al.  An Evolutionary Post Production System , 2000 .

[290]  Larry Bull,et al.  Self-Adaptive Mutation in ZCS Controllers , 2000, EvoWorkshops.

[291]  Olivier Sigaud,et al.  Being Reactive by Exchanging Roles: An Empirical Study , 2000, Balancing Reactivity and Social Deliberation in Multi-Agent Systems.

[292]  Olivier Sigaud,et al.  Using Classifier Systems as Adaptive Expert Systems for Control , 2000, IWLCS.

[293]  Larry Bull,et al.  Simple Markov Models of the Genetic Algorithm in Classifier Systems: Multi-step Tasks , 2000, IWLCS.

[294]  Olivier Sigaud,et al.  Combining Anticipation and Dynamic Programming in Classifier Systems , 2000 .

[295]  Stewart W. Wilson Mining Oblique Data with XCS , 2000, IWLCS.

[296]  Martin V. Butz,et al.  Introducing a Genetic Generalization Pressure to the Anticipatory Classifier System - Part 1: Theoretical approach , 2000, GECCO.

[297]  Luc Boullart,et al.  An implementation of genetic algorithms for rule based machine learning , 2000 .

[298]  Larry Bull,et al.  A Self-Adaptive Classifier System , 2000, IWLCS.

[299]  P. Lanzi,et al.  Adaptive Agents with Reinforcement Learning and Internal Memory , 2000 .

[300]  Igor Durdanovic,et al.  An Artificial Economy of Post Production Systems , 2000, IWLCS.

[301]  Dennis R. Durbin,et al.  A New Bootstrapping Method to Improve Classification Performance in Learning Classifier Systems , 2000, PPSN.

[302]  Pech-Gourg Nicolas,et al.  A genetic algorithm for the classification of natural corks , 2001 .

[303]  L. Bull,et al.  CXCS: improvements and corporate generalization , 2001 .

[304]  A. Greenyer Coil 2000 Competition The use of a learning classifier system JXCS , 2001 .

[305]  Xavier Llorà,et al.  Evolution of Decision Trees , 2001 .

[306]  U. Chatterjee,et al.  Effect of unconventional feeds on production cost, growth performance and expression of quantitative genes in growing pigs , 2022, Journal of the Indonesian Tropical Animal Agriculture.

[307]  Lashon B. Booker,et al.  Classifier systems, endogenous fitness, and delayed rewards: a preliminary investigation , 2001 .

[308]  Xavier Llorà,et al.  XCS and GALE: A Comparative Study of Two Learning Classifier Systems on Data Mining , 2001, IWLCS.

[309]  Stewart W. Wilson,et al.  Studies of the XCSI classifier system on a data mining problem , 2001 .

[310]  Joerg joke Heitkoetter,et al.  The hitch-hiker''s guide to evolutionary computation , 2001 .

[311]  J. Aguilar,et al.  Fuzzy Classifier System and Genetic Programming on system identification problems , 2001 .

[312]  Shinn-Ying Ho,et al.  Designing an optimal evolutionary fuzzy decision tree for data mining , 2001 .

[313]  H. Ishibuchi,et al.  Three-objective genetic algorithms for designing compact fuzzy rule-based systems for pattern classification problems , 2001 .

[314]  L. Booker A new approach to encoding actions in classifier systems , 2001 .

[315]  Xavier Llorà,et al.  Inducing Partially-Defined Instances with Evolutionary Algorithms , 2001, ICML.

[316]  Xavier Llorà,et al.  Knowledge-independent data mining with fine-grained parallel evolutionary algorithms , 2001 .

[317]  D. Dasgupta,et al.  Evolving complex fuzzy classifier rules using a linear tree genetic representation , 2001 .

[318]  Pier Luca Lanzi,et al.  Mining interesting knowledge from data with the XCS classifier system , 2001 .

[319]  James A. Foster,et al.  A genetic algorithm for expert system rule generation , 2001 .

[320]  Stewart W. Wilson Function approximation with a classifier system , 2001 .

[321]  Martin V. Butz,et al.  How XCS evolves accurate classifiers , 2001 .

[322]  Olivier Sigaud,et al.  Adding a generalization mechanism to YACS , 2001 .

[323]  Anthony G. Pipe,et al.  "Michigan" and "Pittsburgh" Fuzzy Classifier Systems for Learning Mobile Robot Control Rules: An Experimental Comparison , 2001, FLAIRS.

[324]  M. Pelikán,et al.  Analyzing the evolutionary pressures in XCS , 2001 .

[325]  Alwyn Barry,et al.  A hierarchical XCS for long path environments , 2001 .

[326]  Anthony G. Pipe,et al.  A Framework for Evolving Fuzzy Classifier Systems Using Genetic Programming , 2001, FLAIRS.

[327]  Y J Cao,et al.  AN EVOLUTIONARY INTELLIGENT AGENTS APPROACH TO TRAFFIC SIGNALS CONTROL , 2001 .

[328]  Filippo Neri Relating two cooperative learning strategies to the features of the found concept descriptions , 2001 .

[329]  Anthony G. Pipe,et al.  X-FCS: a fuzzy classifier system using accuracy based fitness - first results , 2001, EUSFLAT Conf..

[330]  Olivier Sigaud,et al.  YACS: a new learning classifier system using anticipation , 2002, Soft Comput..

[331]  Benjoe A. Juliano,et al.  Modifying XCS for Size-Constrained Systems , 2002 .

[332]  Fabio Roli,et al.  Stock Market Prediction by a Mixture of Genetic-Neural Experts , 2002, Int. J. Pattern Recognit. Artif. Intell..

[333]  Plamen Angelov,et al.  Evolving Rule-Based Models: A Tool For Design Of Flexible Adaptive Systems , 2002 .

[334]  Robert E. Smith,et al.  XCS Applied To Mapping FPGA Architectures , 2002, GECCO.

[335]  Xavier Llorà,et al.  Coevolving Different Knowledge Representations With Fine-grained Parallel Learning Classifier Systems , 2002, GECCO.

[336]  Terence C. Fogarty,et al.  Co-evolutionary classifier systems for multi-agent simulation , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[337]  Martin J. Oates,et al.  A Ruleset Reduction Algorithm for the XCS Learning Classifier System , 2002, IWLCS.

[338]  Peter Ross,et al.  Hyper-heuristics: Learning To Combine Simple Heuristics In Bin-packing Problems , 2002, GECCO.

[339]  Larry Bull,et al.  TCS Learning Classifier System Controller on a Real Robot , 2002, PPSN.

[340]  Larry Bull,et al.  ZCS Redux , 2002, Evolutionary Computation.

[341]  Alex Alves Freitas,et al.  A Genetic Algorithm For Discovering Interesting Fuzzy Prediction Rules: Applications To Science And Technology Data , 2002, GECCO.

[342]  Larry Bull,et al.  Accuracy-based Neuro And Neuro-fuzzy Classifier Systems , 2002, GECCO.

[343]  Federico Divina,et al.  Evolutionary Concept Learning , 2002, GECCO.

[344]  Hisao Ishibuchi,et al.  Fuzzy Rule Selection By Data Mining Criteria And Genetic Algorithms , 2002, GECCO.

[345]  Anthony G. Pipe,et al.  First Results from Experiments in Fuzzy Classifier System Architectures for Mobile Robotics , 2002, PPSN.

[346]  Gabriella Kókai,et al.  An Experimental Comparison of Genetic and Classical Concept Learning Methods , 2002, GECCO Late Breaking Papers.

[347]  Tim Kovacs,et al.  Performance and population state metrics for rule-based learning systems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[348]  Jaume Bacardit,et al.  Evolution Of Adaptive Discretization Intervals For A Rule-based Genetic Learning System , 2002, GECCO.

[349]  Martin V. Butz,et al.  An algorithmic description of XCS , 2000, Soft Comput..

[350]  Tim Kovacs Learning classifier systems resources , 2002, Soft Comput..

[351]  Pier Luca Lanzi,et al.  Learning classifier systems from a reinforcement learning perspective , 2002, Soft Comput..

[352]  Larry Bull,et al.  Towards The Use Of XCS In Interactive Evolutionary Design , 2002, GECCO.

[353]  Olivier Sigaud,et al.  Further Comparison between ATNoSFERES and XCSM , 2002, IWLCS.

[354]  W. Cyre Learning grammars with a modified classifier system , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[355]  Larry Bull,et al.  Initial Modifications to XCS for Use in Interactive Evolutionary Design , 2002, PPSN.

[356]  Takao Terano,et al.  Towards a multiagent design principle: analyzing an organizational-learning oriented classifer system , 2002 .

[357]  Chris J. Hinde,et al.  Evolving Readable Perl , 2002, GECCO.

[358]  Alwyn Barry,et al.  The stability of long action chains in XCS , 2002, Soft Comput..

[359]  Shinichi Nakasuka,et al.  Robustness in organizational-learning oriented classifier system , 2002, Soft Comput..

[360]  Larry Bull,et al.  An accuracy based corporate classifier system , 2002, Soft Comput..

[361]  Tim Kovacs What should a classifier system learn and how should we measure it? , 2002, Soft Comput..

[362]  Larry Bull,et al.  On accuracy-based fitness , 2002, Soft Comput..

[363]  Martin V. Butz,et al.  Anticipatory Learning Classifier Systems , 2002, Genetic Algorithms and Evolutionary Computation.

[364]  Larry Bull,et al.  Consideration of Multiple Objectives in Neural Learning Classifier Systems , 2002, PPSN.

[365]  Olivier Sigaud,et al.  A Comparison Between ATNoSFERES And XCSM , 2002, GECCO.

[366]  M. Marchesi,et al.  NXCS: Hybrid Approach to Stock Indexes Forecasting , 2002 .

[367]  Filippo Neri Cooperative Concept Learning By Means Of A Distributed GA , 2002, GECCO.

[368]  Larry Bull,et al.  Lookahead And Latent Learning In ZCS , 2002, GECCO.

[369]  Ching-Chang Wong,et al.  Self-generating rule-mapping fuzzy controller design using a genetic algorithm , 2002 .

[370]  Olivier Sigaud,et al.  Designing Efficient Exploration with MACS: Modules and Function Approximation , 2003, Annual Conference on Genetic and Evolutionary Computation.

[371]  Peter Ross,et al.  Dynamic Strategies in a Real-Time Strategy Game , 2003, GECCO.

[372]  Ester Bernadó-Mansilla,et al.  Accuracy-Based Learning Classifier Systems: Models, Analysis and Applications to Classification Tasks , 2003, Evolutionary Computation.

[373]  Martin V. Butz,et al.  Towards Building Block Propagation in XCS: A Negative Result and Its Implications , 2003, GECCO.

[374]  Alwyn Barry,et al.  Limits in Long Path Learning with XCS , 2003, GECCO.

[375]  Federico Divina,et al.  A Method for Handling Numerical Attributes in GA-Based Inductive Concept Learners , 2003, GECCO.

[376]  Jaume Bacardit,et al.  Evolving Multiple Discretizations with Adaptive Intervals for a Pittsburgh Rule-Based Learning Classifier System , 2003, GECCO.

[377]  Devon Dawson,et al.  Improving Performance in Size-Constrained Extended Classifier Systems , 2003, GECCO.

[378]  Tim Kovacs Strength or accuracy: credit assignment in learning classifier systems , 2003 .

[379]  Pier Luca Lanzi Using Raw Accuracy to Estimate Classifier Fitness in XCS , 2003, GECCO.

[380]  Kwong-Sak Leung,et al.  Data Classification Using Genetic Parallel Programming , 2003, GECCO.

[381]  Martin V. Butz,et al.  Tournament Selection: Stable Fitness Pressure in XCS , 2003, GECCO.

[382]  Miguel Toro,et al.  Evolutionary learning of hierarchical decision rules , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[383]  Christopher Stone,et al.  Towards Learning Classifier Systems for Continuous-Valued Online Environments , 2003, GECCO.

[384]  Olgierd Unold,et al.  Use of Learning Classifier System for Inferring Natural Language Grammar , 2007, HIS.

[385]  Pier Luca Lanzi Estimating Classifier Generalization and Action's Effect: A Minimalist Approach , 2003, GECCO.

[386]  Martin V. Butz,et al.  Bounding the Population Size in XCS to Ensure Reproductive Opportunities , 2003, GECCO.

[387]  Jesús S. Aguilar-Ruiz,et al.  Natural Coding: A More Efficient Representation for Evolutionary Learning , 2003, GECCO.

[388]  T. Kovacs,et al.  High Classification Accuracy Does Not Imply Effective Genetic Search , 2004, GECCO.

[389]  Eric B. Baum,et al.  Toward a Model of Intelligence as an Economy of Agents , 1999, Machine Learning.

[390]  Xavier Llorà,et al.  Mixed Decision Trees: Minimizing Knowledge Representation Bias in LCS , 2004, GECCO.

[391]  Hayong Harry Zhou,et al.  CSM: A computational model of cumulative learning , 2004, Machine Learning.

[392]  Cezary Z. Janikow,et al.  A knowledge-intensive genetic algorithm for supervised learning , 1993, Machine Learning.

[393]  A. Martin V. Butz,et al.  The anticipatory classifier system and genetic generalization , 2002, Natural Computing.

[394]  Tung Wan Cheng,et al.  Strategy of futures trading mechanism using extended classifier system , 2004, 2004 2nd International IEEE Conference on 'Intelligent Systems'. Proceedings (IEEE Cat. No.04EX791).

[395]  Stephanie Forrest,et al.  Learning and programming in classifier systems , 2004, Machine Learning.

[396]  Martin V. Butz,et al.  Toward a theory of generalization and learning in XCS , 2004, IEEE Transactions on Evolutionary Computation.

[397]  Jaume Bacardit Peñarroya Pittsburgh genetic-based machine learning in the data mining era: representations, generalization, and run-time , 2004 .

[398]  John J. Grefenstette,et al.  Learning sequential decision rules using simulation models and competition , 2004, Machine Learning.

[399]  Lashon B. Booker,et al.  Classifier systems that learn internal world models , 1988, Machine Learning.

[400]  David E. Goldberg,et al.  Probability matching, the magnitude of reinforcement, and classifier system bidding , 2004, Machine Learning.

[401]  Larry Bull,et al.  A Simple Payoff-Based Learning Classifier System , 2004, PPSN.

[402]  Stewart W. Wilson Classifiers that approximate functions , 2002, Natural Computing.

[403]  Stephen F. Smith,et al.  Competition-based induction of decision models from examples , 1993, Machine Learning.

[404]  D. Goldberg,et al.  Bounding Learning Time in XCS , 2004, GECCO.

[405]  Zhanna V. Zatuchna AgentP Model: Learning Classifier System with Associative Perception , 2004, PPSN.

[406]  Larry Bull,et al.  A Self-adaptive Neural Learning Classifier System with Constructivism for Mobile Robot Control , 2004, PPSN.

[407]  Drew Mellor Policy transfer with a relational learning classifier system , 2005, GECCO '05.

[408]  Hussein A. Abbass,et al.  Be real! XCS with continuous-valued inputs , 2005, GECCO '05.

[409]  Larry Bull,et al.  Genetic Programming with a Genetic Algorithm for Feature Construction and Selection , 2005, Genetic Programming and Evolvable Machines.

[410]  Martin V. Butz,et al.  Extracted global structure makes local building block processing effective in XCS , 2005, GECCO '05.

[411]  Olivier Sigaud,et al.  An Experimental Comparison Between ATNoSFERES and ACS , 2005, IWLCS.

[412]  Keiki Takadama,et al.  Learning classifier system equivalent with reinforcement learning with function approximation , 2005, GECCO '05.

[413]  David J. Slate,et al.  Letter Recognition Using Holland-Style Adaptive Classifiers , 1991, Machine Learning.

[414]  Drew Mellor,et al.  A first order logic classifier system , 2005, GECCO '05.

[415]  Hussein A. Abbass,et al.  Can Evolutionary Computation Handle Large Datasets? A Study into Network Intrusion Detection , 2005, Australian Conference on Artificial Intelligence.

[416]  Ester Bernadó-Mansilla,et al.  The Class Imbalance Problem in UCS Classifier System: A Preliminary Study , 2005, IWLCS.

[417]  Javier G. Marín-Blázquez,et al.  A Hyper-Heuristic Framework with XCS: Learning to Create Novel Problem-Solving Algorithms Constructed from Simpler Algorithmic Ingredients , 2005, IWLCS.

[418]  Marc Schoenauer,et al.  ATNoSFERES revisited , 2005, GECCO '05.

[419]  Michele Marchesi,et al.  A hybrid genetic-neural architecture for stock indexes forecasting , 2005, Inf. Sci..

[420]  Hussein A. Abbass,et al.  DXCS: an XCS system for distributed data mining , 2005, GECCO '05.

[421]  Ester Bernadó-Mansilla,et al.  Class imbalance problem in UCS classifier system: fitness adaptation , 2005, 2005 IEEE Congress on Evolutionary Computation.

[422]  Osamu Katai,et al.  Analyzing Parameter Sensitivity and Classifier Representations for Real-Valued XCS , 2005, IWLCS.

[423]  Jesús S. Aguilar-Ruiz,et al.  Knowledge-based fast evaluation for evolutionary learning , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[424]  J. Grefenstette Credit Assignment in Rule Discovery Systems Based on Genetic Algorithms , 2005, Machine Learning.

[425]  Keiki Takadama,et al.  Counter example for Q-bucket-brigade under prediction problem , 2005, GECCO '05.

[426]  Three Architectures for Continuous Action , 2005, IWLCS.

[427]  Martin V. Butz,et al.  Computational Complexity of the XCS Classifier System , 2005 .

[428]  Martin V. Butz Kernel-based, ellipsoidal conditions in the real-valued XCS classifier system , 2005, GECCO '05.

[429]  Yang Gao,et al.  LCSE: Learning Classifier System Ensemble for Incremental Medical Instances , 2005, IWLCS.

[430]  G. Robertson,et al.  A Tale of Two Classifier Systems , 2005, Machine Learning.

[431]  Larry Bull,et al.  Backpropagation in Accuracy-Based Neural Learning Classifier Systems , 2005, IWLCS.

[432]  An-Pin Chen,et al.  Applying Extending Classifier System to Develop an Option-Operation Suggestion Model of Intraday Trading - An Example of Taiwan Index Option , 2005, KES.

[433]  Osamu Katai,et al.  Learning Classifier System with Convergence and Generalization , 2005 .

[434]  Antonina Starita,et al.  Post-processing Clustering to Decrease Variability in XCS Induced Rulesets , 2005, IWLCS.

[435]  Lashon B. Booker Adaptive value function approximations in classifier systems , 2005, GECCO '05.

[436]  Anthony J. Bagnall,et al.  On the Classification of Maze Problems , 2005 .

[437]  Xavier Llorà,et al.  The compact classifier system: scalability analysis and first results , 2005, 2005 IEEE Congress on Evolutionary Computation.

[438]  Martin V. Butz,et al.  Effect of Pure Error-Based Fitness in XCS , 2005, IWLCS.

[439]  Larry Bull,et al.  A Memetic Learning Classifier System for Describing Continuous-Valued Problem Spaces , 2005 .

[440]  Tin Kam Ho,et al.  Domain of competence of XCS classifier system in complexity measurement space , 2005, IEEE Transactions on Evolutionary Computation.

[441]  Xavier Llorà,et al.  Binary rule encoding schemes: a study using the compact classifier system , 2005, GECCO '05.

[442]  Larry Bull,et al.  On the use of rule-sharing in learning classifier system ensembles , 2005, 2005 IEEE Congress on Evolutionary Computation.

[443]  Stewart W. Wilson Classifier Systems and the Animat Problem , 1987, Machine Learning.

[444]  Ester Bernadó-Mansilla,et al.  The class imbalance problem in learning classifier systems: a preliminary study , 2005, GECCO '05.

[445]  Lawrence Davis A Formal Relationship Between Ant Colony Optimizers and Classifier Systems , 2005, IWLCS.

[446]  Jan Drugowitsch,et al.  XCS with eligibility traces , 2005, GECCO '05.

[447]  Larry Bull,et al.  A memetic accuracy-based neural learning classifier system , 2005, 2005 IEEE Congress on Evolutionary Computation.

[448]  Jaume Bacardit,et al.  Bloat Control and Generalization Pressure Using the Minimum Description Length Principle for a Pittsburgh Approach Learning Classifier System , 2005, IWLCS.

[449]  Larry Bull,et al.  Two simple learning classifier systems , 2005 .

[450]  Lashon B. Booker Approximating Value Functions in Classifier Systems , 2005 .

[451]  Martin V. Butz,et al.  Gradient descent methods in learning classifier systems: improving XCS performance in multistep problems , 2005, IEEE Transactions on Evolutionary Computation.

[452]  John H. Holmes,et al.  Three Methods for Covering Missing Input Data in XCS , 2005, IWLCS.

[453]  Anthony J. Bagnall,et al.  AgentP classifier system: self-adjusting vs. gradual approach , 2005, 2005 IEEE Congress on Evolutionary Computation.

[454]  K. D. Jong Learning with Genetic Algorithms: An Overview , 2005, Machine Learning.

[455]  An-Pin Chen,et al.  Using Extended Classifier System to Forecast S&P Futures Based on Contrary Sentiment Indicators , 2005, 2005 IEEE Congress on Evolutionary Computation.

[456]  Martin V. Butz,et al.  Improving the Performance of a Pittsburgh Learning Classifier System Using a Default Rule , 2005, IWLCS.

[457]  Larry Bull,et al.  Building anticipations in an accuracy-based learning classifier system by use of an artificial neural network , 2005, 2005 IEEE Congress on Evolutionary Computation.

[458]  Adel Torkaman Rahmani,et al.  A Fuzzy System to Control Exploration Rate in XCS , 2005, IWLCS.

[459]  Zhanna V. Zatuchna AgentP : a learning classifier system with associative perception in maze environments , 2005 .

[460]  Ester Bernadó-Mansilla,et al.  Bounding XCS's parameters for unbalanced datasets , 2006, GECCO '06.

[461]  Peter A. N. Bosman,et al.  Proceedings of the Genetic and Evolutionary Computation Conference - GECCO - 2006 , 2006 .

[462]  Larry Bull,et al.  Self-adaptation in classifier system controllers , 2006, Artificial Life and Robotics.

[463]  Martin V. Butz,et al.  Rule-Based Evolutionary Online Learning Systems - A Principled Approach to LCS Analysis and Design , 2006, Studies in Fuzziness and Soft Computing.

[464]  Osamu Katai,et al.  Agent architecture based on an interactive self-reflection classifier system , 2006, Artificial Life and Robotics.

[465]  Martin V. Butz,et al.  Studying XCS/BOA learning in Boolean functions: structure encoding and random Boolean functions , 2006, GECCO '06.

[466]  Stewart W. Wilson,et al.  Using convex hulls to represent classifier conditions , 2006, GECCO '06.

[467]  Tim Kovacs,et al.  A Study of Structural and Parametric Learning in XCS , 2006, Evolutionary Computation.

[468]  Hussein A. Abbass,et al.  The Role of Early Stopping and Population Size in XCS for Intrusion Detection , 2006, SEAL.

[469]  Tim Kovacs,et al.  A representational ecology for learning classifier systems , 2006, GECCO '06.

[470]  Anthony J. Bagnall,et al.  A Reinforcement Learning Agent with Associative Perception , 2006 .

[471]  Martin V. Butz,et al.  Problem solution sustenance in XCS: Markov chain analysis of niche support distributions and the impact on computational complexity , 2007, Genetic Programming and Evolvable Machines.

[472]  Daniele Loiacono,et al.  Classifier prediction based on tile coding , 2006, GECCO '06.

[473]  Daniele Loiacono,et al.  Prediction update algorithms for XCSF: RLS, Kalman filter, and gain adaptation , 2006, GECCO '06.

[474]  Zhanna V. Zatuchna,et al.  Modelling of Temperament in an Associative Reinforcement Learning Agent , 2006 .

[475]  Daniele Loiacono,et al.  Standard and averaging reinforcement learning in XCS , 2006, GECCO '06.

[476]  Martin V. Butz,et al.  Hyper-ellipsoidal conditions in XCS: rotation, linear approximation, and solution structure , 2006, GECCO '06.

[477]  Martin V. Butz,et al.  Automated Global Structure Extraction for Effective Local Building Block Processing in XCS , 2006, Evolutionary Computation.

[478]  David E. Goldberg,et al.  Substructural Surrogates for Learning Decomposable Classification Problems , 2008, IWLCS.

[479]  Daniele Loiacono,et al.  Support vector regression for classifier prediction , 2007, GECCO '07.

[480]  Kumara Sastry,et al.  Analysis of Population Evolution in Classifier Systems Using Symbolic Representations , 2007, IWLCS.

[481]  Gavin Brown,et al.  Bayesian estimation of rule accuracy in UCS , 2007, GECCO '07.

[482]  Claude Lattaud,et al.  Imitation guided learning in learning classifier systems , 2009, Natural Computing.

[483]  Daniele Loiacono,et al.  Classifier systems that compute action mappings , 2007, GECCO '07.

[484]  Jaume Bacardit,et al.  Empirical Evaluation of Ensemble Techniques for a Pittsburgh Learning Classifier System , 2007, IWLCS.

[485]  Gavin Brown,et al.  UCSpv: principled voting in UCS rule populations , 2007, GECCO '07.

[486]  Dave Toney,et al.  Evolutionary reinforcement learning of spoken dialogue strategies , 2007 .

[487]  David E. Goldberg,et al.  Modeling XCS in class imbalances: population size and parameter settings , 2007, GECCO '07.

[488]  Daniele Loiacono,et al.  Evolving Classifiers Ensembles with Heterogeneous Predictors , 2008, IWLCS.

[489]  Hussein A. Abbass,et al.  Intrusion detection with evolutionary learning classifier systems , 2009, Natural Computing.

[490]  Jaume Bacardit,et al.  A learning classifier system with mutual-information-based fitness , 2007, 2007 IEEE Congress on Evolutionary Computation.

[491]  Ester Bernadó-Mansilla,et al.  Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS , 2008, IWLCS.

[492]  Ester Bernadó-Mansilla,et al.  Fuzzy-UCS: preliminary results , 2007, GECCO '07.

[493]  Ester Bernadó-Mansilla,et al.  Evolving Fuzzy Rules with UCS: Preliminary Results , 2008, IWLCS.

[494]  Jan Drugowitsch,et al.  A principled foundation for LCS , 2007, GECCO '07.

[495]  Sanghamitra Bandyopadhyay,et al.  Classification and learning using genetic algorithms - applications in bioinformatics and web intelligence , 2007, Natural computing series.

[496]  Stewart W. Wilson Classifier Conditions Using Gene Expression Programming , 2008, IWLCS.

[497]  David E. Goldberg,et al.  Modeling selection pressure in XCS for proportionate and tournament selection , 2007, GECCO '07.

[498]  Jorge Casillas,et al.  Fuzzy-XCS: A Michigan Genetic Fuzzy System , 2007, IEEE Transactions on Fuzzy Systems.

[499]  Xavier Llorà,et al.  Linkage Learning, Rule Representation, and the X-Ary Extended Compact Classifier System , 2008, IWLCS.

[500]  Drew Mellor,et al.  A Learning Classifier System Approach to Relational Reinforcement Learning , 2008, IWLCS.

[501]  Takao Terano,et al.  Technology Extraction of Expert Operator Skills from Process Time Series Data , 2007, IWLCS.

[502]  Fernando José Von Zuben,et al.  Analysing Learning Classifier Systems in Reactive and Non-reactive Robotic Tasks , 2007, IWLCS.

[503]  Cédric Sanza,et al.  XCSF with computed continuous action , 2007, GECCO '07.

[504]  Will N. Browne,et al.  Investigating Scaling of an Abstracted LCS Utilising Ternary and S-Expression Alphabets , 2007, IWLCS.

[505]  Daniele Loiacono,et al.  Generalization in the XCSF Classifier System: Analysis, Improvement, and Extension , 2007, Evolutionary Computation.

[506]  Hussein A. Abbass,et al.  Real time signature extraction from a supervised classifier system , 2007, 2007 IEEE Congress on Evolutionary Computation.

[507]  Martin V. Butz,et al.  Empirical analysis of generalization and learning in XCS with gradient descent , 2007, GECCO '07.

[508]  Pier Luca Lanzi,et al.  Anticipation mappings for learning classifier systems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[509]  Larry Bull,et al.  On lookahead and latent learning in simple LCS , 2007, GECCO '07.

[510]  Jan Drugowitsch,et al.  A formal framework and extensions for function approximation in learning classifier systems , 2007, Machine Learning.

[511]  Daniele Loiacono,et al.  Analysis and Improvements of the Classifier Error Estimate in XCSF , 2007, IWLCS.

[512]  Martin V. Butz,et al.  Function Approximation With XCS: Hyperellipsoidal Conditions, Recursive Least Squares, and Compaction , 2008, IEEE Transactions on Evolutionary Computation.

[513]  Xavier Llorà,et al.  A new approach for multi-label classification based on default hierarchies and organizational learning , 2008, GECCO '08.

[514]  Jan Drugowitsch Design and Analysis of Learning Classifier Systems - A Probabilistic Approach , 2008, Studies in Computational Intelligence.

[515]  Larry Bull,et al.  On the effects of node duplication and connection-oriented constructivism in neural XCSF , 2008, GECCO '08.

[516]  Andrea Bonarini Learning Behaviors represented as Fuzzy Logic Controllers , 2008 .

[517]  Ester Bernadó-Mansilla,et al.  Genetic-based machine learning systems are competitive for pattern recognition , 2008, Evol. Intell..

[518]  Jaume Bacardit,et al.  Data Mining in Proteomics with Learning Classifier Systems , 2008, Learning Classifier Systems in Data Mining.

[519]  Xin Yao,et al.  Neural-Based Learning Classifier Systems , 2008, IEEE Transactions on Knowledge and Data Engineering.

[520]  Martin V. Butz,et al.  Self-adaptive mutation in XCSF , 2008, GECCO '08.

[521]  Pier Luca Lanzi,et al.  Learning classifier systems: then and now , 2008, Evol. Intell..

[522]  Larry Bull,et al.  Self-adaptive constructivism in Neural XCS and XCSF , 2008, GECCO '08.

[523]  Martin V. Butz,et al.  An analysis of matching in learning classifier systems , 2008, GECCO '08.

[524]  Ouen Pinngern,et al.  Towards Clustering with Learning Classifier Systems , 2008, Learning Classifier Systems in Data Mining.

[525]  Narayanan Unny Edakunni,et al.  Modeling UCS as a mixture of experts , 2009, GECCO '09.

[526]  Hussein A. Abbass,et al.  An adaptive genetic-based signature learning system for intrusion detection , 2009, Expert Syst. Appl..

[527]  Roberto Santana,et al.  Improving the Discovery Component of Classifier Systems by the application of Estimation of Distribution Algorithms , 2009 .

[528]  Edmund K. Burke,et al.  Improving the scalability of rule-based evolutionary learning , 2009, Memetic Comput..

[529]  Larry Bull,et al.  On Dynamical Genetic Programming: Random Boolean Networks in Learning Classifier Systems , 2009, EuroGP.

[530]  Larry Bull,et al.  On dynamical genetic programming: simple Boolean networks in learning classifier systems , 2009, Int. J. Parallel Emergent Distributed Syst..

[531]  Alex A. Freitas,et al.  Evolutionary Computation , 2002 .

[532]  Tim Kovacs,et al.  Genetics-Based Machine Learning , 2012, Handbook of Natural Computing.