Refined asymptotics for Landau-de Gennes minimizers on planar domains

In our previous work [12], we studied asymptotic behavior of minimizers of the Landau-de Gennes energy functional on planar domains as the nematic correlation length converges to zero. Here we improve upon those results, in particular by sharpening the description of the limiting map of the minimizers. We also provide an expression for the energy valid for a small, but fixed value of the nematic correlation length. In this paper we revisit some of the conclusions we obtained in [12]. In that paper we considered the Landau-de Gennes energy functional, which can be expressed as

[1]  R. Ignat,et al.  Stability of the Melting Hedgehog in the Landau–de Gennes Theory of Nematic Liquid Crystals , 2014, 1404.1729.

[2]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[3]  Frédéric Hélein,et al.  Asymptotics for the minimization of a Ginzburg-Landau functional , 1993 .

[4]  A. Pisante,et al.  Uniaxial versus Biaxial Character of Nematic Equilibria in Three Dimensions , 2013, 1312.3358.

[5]  R. Ignat,et al.  Instability of point defects in a two-dimensional nematic liquid crystal model , 2015, 1503.03670.

[6]  J. M. Robbins,et al.  Half-Integer Point Defects in the Q-Tensor Theory of Nematic Liquid Crystals , 2014, Journal of Nonlinear Science.

[7]  Apala Majumdar,et al.  Symmetry of Uniaxial Global Landau-de Gennes Minimizers in the Theory of Nematic Liquid Crystals , 2011, SIAM J. Math. Anal..

[8]  Giacomo Canevari Line Defects in the Small Elastic Constant Limit of a Three-Dimensional Landau-de Gennes Model , 2015, 1501.05236.

[9]  J. Dorfmeister,et al.  On the meromorphic potential for a harmonic surface in a k-symmetric space , 1997 .

[10]  Giacomo Canevari,et al.  Polydispersity and surface energy strength in nematic colloids , 2019, 1910.03342.

[11]  G. Kitavtsev,et al.  Liquid crystal defects in the Landau-de Gennes theory in two dimensions - beyond the one-constant approximation , 2016, 1608.03139.

[12]  Giacomo Canevari Biaxiality in the asymptotic analysis of a 2-D Landau-de Gennes model for liquid crystals , 2013, 1307.8065.

[13]  Giacomo Canevari,et al.  Design of effective bulk potentials for nematic liquid crystals via colloidal homogenisation , 2019, 1901.03541.

[14]  R. Ignat,et al.  Symmetry and Multiplicity of Solutions in a Two-Dimensional Landau–de Gennes Model for Liquid Crystals , 2019, Archive for Rational Mechanics and Analysis.

[15]  D. Golovaty,et al.  On Minimizers of a Landau–de Gennes Energy Functional on Planar Domains , 2013, 1307.4437.

[16]  V. Slastikov,et al.  Landau-de Gennes Corrections to the Oseen-Frank Theory of Nematic Liquid Crystals , 2019, Archive for Rational Mechanics and Analysis.

[17]  Apala Majumdar,et al.  Landau–De Gennes Theory of Nematic Liquid Crystals: the Oseen–Frank Limit and Beyond , 2008, 0812.3131.

[18]  Arghir Zarnescu,et al.  Refined approximation for minimizers of a Landau-de Gennes energy functional , 2010, 1006.5689.