Invariant Domains and First-Order Continuous Finite Element Approximation for Hyperbolic Systems

We propose a numerical method to solve general hyperbolic systems in any space dimension using forward Euler time stepping and continuous finite elements on non-uniform grids. The properties of the method are based on the introduction of an artificial dissipation that is defined so that any convex invariant sets containing the initial data is an invariant domain for the method. The invariant domain property is proved for any hyperbolic system provided a CFL condition holds. The solution is also shown to satisfy a discrete entropy inequality for every admissible entropy of the system. The method is formally first-order accurate in space and can be made high-order in time by using Strong Stability Preserving algorithms. This technique extends to continuous finite elements the work of \cite{Hoff_1979,Hoff_1985}, and \cite{Frid_2001}.

[1]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[2]  J. Boris,et al.  Flux-Corrected Transport , 1997 .

[3]  D. Prowe Berlin , 1855, Journal of public health, and sanitary review.

[4]  A. Bressan,et al.  Vanishing Viscosity Solutions of Nonlinear Hyperbolic Systems , 2001, math/0111321.

[5]  Chi-Wang Shu,et al.  On positivity preserving finite volume schemes for Euler equations , 1996 .

[6]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[7]  Antony Jameson,et al.  Positive schemes and shock modelling for compressible flows , 1995 .

[8]  Stanley Osher,et al.  The Riemann problem for nonconvex scalar conservation laws and Hamilton-Jacobi equations , 1983 .

[9]  Stefan Turek,et al.  Flux correction tools for finite elements , 2002 .

[10]  Bojan Popov,et al.  Adaptive Semidiscrete Central-Upwind Schemes for Nonconvex Hyperbolic Conservation Laws , 2007, SIAM J. Sci. Comput..

[11]  Alexandre J. Chorin,et al.  Random choice solution of hyperbolic systems , 1976 .

[12]  D. Hoff Invariant regions for systems of conservation laws , 1985 .

[13]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[14]  Jean-Luc Guermond,et al.  Error Estimates of a First-order Lagrange Finite Element Technique for Nonlinear Scalar Conservation Equations , 2016, SIAM J. Numer. Anal..

[15]  M. Crandall,et al.  Monotone difference approximations for scalar conservation laws , 1979 .

[16]  A. Bressan Hyperbolic systems of conservation laws : the one-dimensional Cauchy problem , 2000 .

[17]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[18]  Bojan Popov,et al.  Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations , 2015, J. Comput. Phys..

[19]  Richard Liska,et al.  Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations , 2003, SIAM J. Sci. Comput..

[20]  C Salmon,et al.  [The P system]. , 1980, Revue francaise de transfusion et immuno-hematologie.

[21]  P. Souganidis,et al.  Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates , 1998 .

[22]  Jean-Luc Guermond,et al.  A maximum-principle preserving finite element method for scalar conservation equations , 2014 .

[23]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[24]  Tai-Ping Liu,et al.  The Riemann problem for general systems of conservation laws , 1975 .

[25]  David Hoff,et al.  A finite difference scheme for a system of two conservation laws with artificial viscosity , 1979 .

[26]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[27]  Mark Ainsworth,et al.  Pyramid Algorithms for Bernstein-Bézier Finite Elements of High, Nonuniform Order in Any Dimension , 2014, SIAM J. Sci. Comput..

[28]  Eitan Tadmor,et al.  Solution of two‐dimensional Riemann problems for gas dynamics without Riemann problem solvers , 2002 .

[29]  Takaaki Nishida,et al.  Global solution for an initial boundary value problem of a quasilinear hyperbolic system , 1968 .

[30]  H. Frid Maps of Convex Sets and Invariant Regions¶for Finite-Difference Systems¶of Conservation Laws , 2001 .