L-Proline catalyzed three-component synthesis of para-naphthoquinone–4-aza-podophyllotoxin hybrids as potent antitumor agents

A series of novel para-naphthoquinone embodied 4-aza-podophyllotoxin hybrids, designed via a molecular hybridization approach, were synthesized in very good yields using one-pot condensation of 3,4-methylenedioxyaniline, aldehydes and 2-hydroxy-1,4-naphthoquinone in the presence of L-proline. All the synthetic derivatives were fully characterized by spectral data and evaluated for their antitumor activity on human hepatoma cells (HepG2) and the Henrietta Lacks strain of cancer cells (Hela). Among the 18 new compounds screened, 12-(3,4,5-trimethoxyphenyl)-5,10-dihydro-benzo[i][1,3]dioxolo[4,5-b]acridine-6,11-dione (4o) has pronounced activity. The results demonstrated the potential importance of molecular hybridization in the development of 4o as a potential antitumor agent.

[1]  G. Bringmann,et al.  Anti-tumoral activities of dioncoquinones B and C and related naphthoquinones gained from total synthesis or isolation from plants. , 2011, European journal of medicinal chemistry.

[2]  Ajay Kumar,et al.  N-hydroxyethyl-4-aza-didehydropodophyllotoxin derivatives as potential antitumor agents. , 2011, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[3]  N. Jain,et al.  Synthesis of a new 4-aza-2,3-didehydropodophyllotoxin analogues as potent cytotoxic and antimitotic agents. , 2011, Bioorganic & medicinal chemistry.

[4]  M. Decker Hybrid molecules incorporating natural products: applications in cancer therapy, neurodegenerative disorders and beyond. , 2011, Current medicinal chemistry.

[5]  L. Costa-Lotufo,et al.  Synthesis and evaluation of quinonoid compounds against tumor cell lines. , 2011, European journal of medicinal chemistry.

[6]  J. Benites,et al.  Biological evaluation of donor-acceptor aminonaphthoquinones as antitumor agents. , 2010, European journal of medicinal chemistry.

[7]  S. Tsogoeva Recent progress in the development of synthetic hybrids of natural or unnatural bioactive compounds for medicinal chemistry. , 2010, Mini reviews in medicinal chemistry.

[8]  D. Shi,et al.  Regioselective synthesis and in vitro anticancer activity of 4-aza-podophyllotoxin derivatives catalyzed by L-proline. , 2010, Journal of combinatorial chemistry.

[9]  L. P. Ovchinnikova,et al.  Cytotoxicity of new n-butylamino and sulfur-containing derivatives of polyfluorinated 1,4-naphthoquinone. , 2010, European journal of medicinal chemistry.

[10]  B. Blagg,et al.  Synthesis and evaluation of Hsp90 inhibitors that contain the 1,4-naphthoquinone scaffold. , 2009, Bioorganic & medicinal chemistry.

[11]  V. Ferreira,et al.  Cytotoxic, Trypanocidal Activities and Physicochemical Parameters of nor-β-Lapachone-based 1,2,3-Triazoles , 2009 .

[12]  P. Helissey,et al.  Design and effective synthesis of the first 4-aza-2,3-didehydropodophyllotoxin rigid aminologue: a N-methyl-4-[(3,4,5-trimethoxyphenyl)amino)]-1,2-dihydroquinoline-lactone. , 2008, The Journal of organic chemistry.

[13]  J. Benites,et al.  Studies on quinones. Part 42: Synthesis of furylquinone and hydroquinones with antiproliferative activity against human tumor cell lines. , 2008, Bioorganic & medicinal chemistry.

[14]  K. Nishimura,et al.  Stereoselective synthesis and cytotoxicity of a cancer chemopreventive naphthoquinone from Tabebuia avellanedae. , 2007, Bioorganic & medicinal chemistry letters.

[15]  E. Barreiro,et al.  Molecular hybridization: a useful tool in the design of new drug prototypes. , 2007, Current medicinal chemistry.

[16]  R. Barret,et al.  Synthesis and evaluation of antifungal activity of naphthoquinone derivatives. , 2006, European journal of medicinal chemistry.

[17]  S. Giorgi-Renault 4-aza-2,3-didéhydropodophyllotoxines : nouveaux lignanes à activité antitumorale obtenus par une synthèse en une seule étape , 2005 .

[18]  Sang Kook Lee,et al.  Induction of G2/M cell cycle arrest and apoptosis by a benz[f]indole-4,9-dione analog in cultured human lung (A549) cancer cells. , 2004, Bioorganic & medicinal chemistry letters.

[19]  Y. Yun,et al.  Inhibitory Effects of J78, a Newly Synthesized 1,4-Naphthoquinone Derivative, on Experimental Thrombosis and Platelet Aggregation , 2004, Pharmacology.

[20]  J. Carneiro,et al.  Quantitative structure-activity relationship in aziridinyl-1,4-naphthoquinone antimalarials: study of theoretical correlations by the PM3 method. , 2004, Bioorganic & medicinal chemistry.

[21]  A. Richwien,et al.  Beeinflussung der Arachidonsäurekaskade durch 2-Aryl-3-halogen/3-hydroxy-1,4-naphthochinone mit Salicyl- und Zimtsäure-Partialstruktur Untersuchungen an 1,4-Naphthochinonen, 29. Mitt. , 2004 .

[22]  C. Chignell,et al.  Cytotoxic action of juglone and plumbagin: a mechanistic study using HaCaT keratinocytes. , 2004, Chemical research in toxicology.

[23]  Jin Sung Kim,et al.  Synthesis and cytotoxicity evaluation of pyridin[2,3-f]indole-2,4,9-trione and benz[f]indole-2,4,9-trione derivatives. , 2003, Bioorganic & medicinal chemistry.

[24]  M. Hiromura,et al.  Direct reaction between shikonin and thiols induces apoptosis in HL60 cells. , 2002, Biological & pharmaceutical bulletin.

[25]  S. Kuo,et al.  Synthesis of 2-alkoxy 1,4-naphthoquinone derivatives as antiplatelet, antiinflammatory, and antiallergic agents. , 2002, Chemical & pharmaceutical bulletin.

[26]  F. Yoshizaki,et al.  In vitro antifungal activity of naphthoquinone derivatives. , 2002, Biological & pharmaceutical bulletin.

[27]  Y. Yun,et al.  Antithrombotic and antiplatelet activities of 2-chloro-3-[4-(ethylcarboxy)-phenyl]-amino-1,4-naphthoquinone (NQ12), a newly synthesized 1,4-naphthoquinone derivative. , 2000, Biochemical pharmacology.

[28]  D. Sok,et al.  2- or 6-(1-azidoalkyl)-5,8-dimethoxy-1,4-naphthoquinone: Synthesis, evaluation of cytotoxic activity; Antitumor activity and inhibitory effect on DNA topoisomerase-I , 1999, Archives of pharmacal research.

[29]  D. Sok,et al.  Naphthazarin derivatives (II): formation of glutathione conjugate, inhibition of DNA topoisomerase-I and cytotoxicity. , 1999, Bioorganic & medicinal chemistry letters.

[30]  K. Nicolaou,et al.  The Chemistry and Biology of Alkannin, Shikonin, and Related Naphthazarin Natural Products. , 1999, Angewandte Chemie.

[31]  S. Kuo,et al.  Synthesis and antiplatelet, antiinflammatory, and antiallergic activities of substituted 3-chloro-5,8-dimethoxy-1,4-naphthoquinone and related compounds. , 1998, Bioorganic & medicinal chemistry.

[32]  S. Keyes,et al.  Cytotoxicity and DNA crosslinks produced by mitomycin analogs in aerobic and hypoxic EMT6 cells. , 1991, Cancer communications.

[33]  T. Mcbride,et al.  The activity of streptonigrin against the Rauscher murine leukemia virus in vivo. , 1966, Cancer research.

[34]  M. Rabinowitz,et al.  Structure-Activity Correlations of Actinomycins and their Derivatives , 1962, Nature.