General relativity in electrical engineering

In electrical engineering metamaterials have been developed that offer unprecedented control over electromagnetic fields. Here, we show that general relativity provides the theoretical tools for designing devices made of such versatile materials. Given a desired device function, the theory describes the electromagnetic properties that turn this function into fact. We consider media that facilitate space-time transformations and include negative refraction. Our theory unifies the concepts operating behind the scenes of perfect invisibility devices, perfect lenses, the optical Aharonov–Bohm effect and electromagnetic analogues of the event horizon, and may lead to further applications.

[1]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[2]  Arata Kochi,et al.  Science at WHO , 2007, The Lancet.

[3]  David R. Smith,et al.  Calculation of material properties and ray tracing in transformation media. , 2006, Optics express.

[4]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[5]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[6]  U. Leonhardt,et al.  Ambiguities in the scattering tomography for central potentials. , 2006, Physical review letters.

[7]  U. Leonhardt Notes on conformal invisibility devices , 2006, physics/0605227.

[8]  Valery Shklover,et al.  Negative Refractive Index Materials , 2006 .

[9]  Yi Xiong,et al.  Realization of optical superlens imaging below the diffraction limit , 2005 .

[10]  U. Leonhardt Energy-momentum balance in quantum dielectrics , 2005, cond-mat/0510071.

[11]  A. Lakhtakia,et al.  Electromagnetic negative-phase-velocity propagation in the ergosphere of a rotating black hole , 2005 .

[12]  A. Geim,et al.  Nanofabricated media with negative permeability at visible frequencies , 2005, Nature.

[13]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[14]  A. Lakhtakia,et al.  A comparison of superradiance and negative phase velocity phenomenons in the ergosphere of a rotating black hole , 2005, astro-ph/0504351.

[15]  R. Blaikie,et al.  Super-resolution imaging through a planar silver layer. , 2005, Optics express.

[16]  A. Lakhtakia,et al.  Reply to 'Comment on 'Towards gravitationally assisted negative refraction of light by vacuum'' , 2005 .

[17]  A. Lakhtakia,et al.  Electromagnetic waves with negative phase velocity in Schwarzschild-de Sitter spacetime , 2005, astro-ph/0503142.

[18]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  A. Lakhtakia,et al.  Negative phase velocity of electromagnetic waves and the cosmological constant , 2004, astro-ph/0411754.

[20]  A. Lakhtakia,et al.  Gravitation and electromagnetic wave propagation with negative phase velocity , 2004, physics/0410265.

[21]  M. McCall COMMENT: Comment on 'Towards gravitationally assisted negative refraction of light by vacuum' , 2004, physics/0410007.

[22]  A. Lakhtakia,et al.  Global and local perspectives of gravitationally assisted negative-phase-velocity propagation of electromagnetic waves in vacuum , 2004, physics/0409159.

[23]  W. Unruh,et al.  Hawking radiation in an electromagnetic waveguide? , 2004, Physical review letters.

[24]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[25]  A. Lakhtakia,et al.  LETTER TO THE EDITOR: Towards gravitationally assisted negative refraction of light by vacuum , 2004, physics/0408021.

[26]  A. Grbic,et al.  Overcoming the diffraction limit with a planar left-handed transmission-line lens. , 2004, Physical review letters.

[27]  G. Gbur Chapter 5 - Nonradiating sources and other “invisible” objects , 2003 .

[28]  M. Nieto-Vesperinas,et al.  Nieto-Vesperinas and Garcia Reply: , 2003 .

[29]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[30]  Matti Lassas,et al.  Anisotropic conductivities that cannot be detected by EIT. , 2003, Physiological measurement.

[31]  U. Leonhardt Quantum physics of simple optical instruments , 2003, quant-ph/0305007.

[32]  U. Leonhardt Notes on waves with negative phase velocity , 2003 .

[33]  R. Schutzhold,et al.  On slow light as a black hole analogue , 2003, gr-qc/0303028.

[34]  G. Uhlmann,et al.  On nonuniqueness for Calderón’s inverse problem , 2003, math/0302258.

[35]  A. P. Valanju,et al.  Valanju, Walser, and Valanju Reply: , 2003 .

[36]  J. Pendry,et al.  Comment on "Wave refraction in negative-index media: always positive and very inhomogeneous". , 2002, Physical review letters.

[37]  J. Pendry Comment on "Left-handed materials do not make a perfect lens". , 2002, Physical review letters.

[38]  D. Djoković,et al.  Solution of the congruence problem for arbitrary hermitian and skew-hermitian matrices over polynomial rings , 2002, math/0206104.

[39]  R. Schutzhold,et al.  Gravity wave analogues of black holes , 2002, gr-qc/0205099.

[40]  J. Minkel Left-Handed Materials Debate Heats Up , 2002 .

[41]  U. Leonhardt A laboratory analogue of the event horizon using slow light in an atomic medium , 2002, Nature.

[42]  U. Leonhardt Theory of a slow-light catastrophe , 2001, physics/0111170.

[43]  U. Leonhardt Quantum catastrophe of slow light , 2001, physics/0111058.

[44]  G. Soff,et al.  Dielectric black hole analogs. , 2001, Physical review letters.

[45]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[46]  W. Steen,et al.  Principles of Optics M. Born and E. Wolf, 7th (expanded) edition, Cambridge University Press, Cambridge, 1999, 952pp. £37.50/US $59.95, ISBN 0-521-64222-1 , 2000 .

[47]  U. Leonhardt Space-time geometry of quantum dielectrics , 2000, physics/0001064.

[48]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[49]  S. Lamoreaux Resource letter CF-1: Casimir force , 1999 .

[50]  F. Vivanco,et al.  SURFACE WAVE SCATTERING BY A VERTICAL VORTEX AND THE SYMMETRY OF THE AHARONOV-BOHM WAVE FUNCTION , 1999 .

[51]  Leonhardt,et al.  Relativistic effects of light in moving media with extremely low group velocity , 1999, Physical review letters.

[52]  U. Leonhardt,et al.  Optics of nonuniformly moving media , 1999, physics/9906038.

[53]  Julien de Rosny,et al.  The Aharonov-Bohm Effect Revisited by an Acoustic Time-Reversal Mirror , 1997 .

[54]  B. Reznik Origin of the thermal radiation in a solid state analog of a black hole , 1997, gr-qc/9703076.

[55]  S. Massar,et al.  A primer for black hole quantum physics , 1995, 0710.4345.

[56]  P. Milonni,et al.  Fizeau's experiment and the Aharonov-Bohm effect , 1995 .

[57]  Bungay,et al.  Equivalency of the Casimir and the Landau-Lifshitz approaches to continuous-media electrodynamics and optical activity on reflection. , 1993, Physical review. B, Condensed matter.

[58]  Daniel M. Greenberger,et al.  The Aharonov-Bohm Effect , 1989 .

[59]  A. Nachman,et al.  Reconstructions from boundary measurements , 1988 .

[60]  J. Stachel Globally stationary but locally static space-times: A gravitational analog of the Aharonov-Bohm effect , 1982 .

[61]  M. Berry,et al.  Wavefront dislocations in the Aharonov-Bohm effect and its water wave analogue , 1980 .

[62]  S. Hawking,et al.  Black hole explosions? , 1974, Nature.

[63]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[64]  J. Plebański,et al.  Electromagnetic Waves in Gravitational Fields , 1960 .

[65]  D. Bohm,et al.  Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .

[66]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .

[67]  Andrew M. Sessler,et al.  Relativity and Engineering , 1984 .

[68]  Marlan O. Scully,et al.  General Relativity and Modern Optics , 1984 .

[69]  T. Broadbent Complex Variables , 1970, Nature.

[70]  R. Feynman The Feynman lectures on physics : mainly mechanics, radiation, and heat / by Richard P. Feynman, Robert B. Leighton, Matthew Sands , 1963 .

[71]  W. Gordon,et al.  Zur Lichtfortpflanzung nach der Relativitätstheorie , 1923 .