Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces

[1]  Pin Chieh Wu,et al.  Phase Modulation with Electrically Tunable Vanadium Dioxide Phase-Change Metasurfaces. , 2019, Nano letters.

[2]  M. Goldflam,et al.  A metasurface optical modulator using voltage-controlled population of quantum well states , 2018, Applied Physics Letters.

[3]  Erez Hasman,et al.  Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials , 2018, Science.

[4]  Federico Capasso,et al.  Polarization state generation and measurement with a single metasurface. , 2018, Optics express.

[5]  Qian Wang,et al.  Tunable and reconfigurable metasurfaces and metadevices , 2018 .

[6]  Ivan I. Kravchenko,et al.  Dynamic transmission control based on all-dielectric Huygens metasurfaces , 2018, Optica.

[7]  H. Atwater,et al.  Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability. , 2018, Nano letters.

[8]  Bo Han Chen,et al.  A broadband achromatic metalens in the visible , 2018, Nature Nanotechnology.

[9]  Ye Feng Yu,et al.  Dynamic Beam Switching by Liquid Crystal Tunable Dielectric Metasurfaces , 2018 .

[10]  Pei Ru Wu,et al.  Optical Anapole Metamaterial. , 2018, ACS nano.

[11]  Costas P. Grigoropoulos,et al.  A Lithography‐Free and Field‐Programmable Photonic Metacanvas , 2018, Advanced materials.

[12]  Federico Capasso,et al.  Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift , 2018, Science Advances.

[13]  Andrei Faraon,et al.  MEMS-tunable dielectric metasurface lens , 2017, Nature Communications.

[14]  Chih-Ming Wang,et al.  Visible Metasurfaces for On-Chip Polarimetry , 2017 .

[15]  Wen-Hui Cheng,et al.  Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure , 2017, Nature Communications.

[16]  W. T. Chen,et al.  Giant intrinsic chiro-optical activity in planar dielectric nanostructures , 2017, Light: Science & Applications.

[17]  Seyedeh Mahsa Kamali,et al.  Angle-multiplexed metasurfaces , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[18]  Din Ping Tsai,et al.  GaN Metalens for Pixel-Level Full-Color Routing at Visible Light. , 2017, Nano letters.

[19]  Chao Zhang,et al.  Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response. , 2017, Nano letters.

[20]  H. Atwater,et al.  Metasurfaces: Millivolt Modulation of Plasmonic Metasurface Optical Response via Ionic Conductance (Adv. Mater. 31/2017) , 2017 .

[21]  Harry A. Atwater,et al.  Millivolt Modulation of Plasmonic Metasurface Optical Response via Ionic Conductance , 2017, Advanced materials.

[22]  T. Zentgraf,et al.  Beam switching and bifocal zoom lensing using active plasmonic metasurfaces , 2017, Light: Science & Applications.

[23]  Sheng Liu,et al.  Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces , 2017, Nature Communications.

[24]  Ai Qun Liu,et al.  Broadband Wide‐Angle Multifunctional Polarization Converter via Liquid‐Metal‐Based Metasurface , 2017 .

[25]  C. H. Chu,et al.  Fundamentals and Applications of Metasurfaces , 2017 .

[26]  R. Agarwal,et al.  Strain Multiplexed Metasurface Holograms on a Stretchable Substrate. , 2017, Nano letters.

[27]  Din Ping Tsai,et al.  Active dielectric metasurface based on phase‐change medium , 2016 .

[28]  D. Tsai,et al.  Self-affine graphene metasurfaces for tunable broadband absorption , 2016 .

[29]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[30]  D. Tsai,et al.  Gate-Tunable Conducting Oxide Metasurfaces. , 2015, Nano letters.

[31]  Lei Zhou,et al.  Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces , 2015 .

[32]  Din Ping Tsai,et al.  Integrated plasmonic metasurfaces for spectropolarimetry , 2015, Nanotechnology.

[33]  David Hillerkuss,et al.  All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale , 2015, Nature Photonics.

[34]  Xiang Zhang,et al.  Metasurface-Enabled Remote Quantum Interference. , 2015, Physical review letters.

[35]  Chih-Ming Wang,et al.  Aluminum plasmonic multicolor meta-hologram. , 2015, Nano letters.

[36]  Yuri S. Kivshar,et al.  Functional and nonlinear optical metasurfaces , 2015 .

[37]  Andrea Alù,et al.  Ultrafast Electrically Tunable Polaritonic Metasurfaces , 2014 .

[38]  J. Kong,et al.  Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. , 2014, Nano letters.

[39]  Ulf Peschel,et al.  Nanoscale conducting oxide PlasMOStor. , 2014, Nano letters.

[40]  Nikolay I. Zheludev,et al.  Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials , 2014 .

[41]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[42]  J. Klem,et al.  Tunable metamaterials based on voltage controlled strong coupling , 2013 .

[43]  Delphine Marris-Morini,et al.  Recent progress in GeSi electro-absorption modulators , 2013, Science and technology of advanced materials.

[44]  박창영,et al.  Optical device including three coupled quantum well structure having multi-energy level , 2013 .

[45]  Jean-Jacques Greffet,et al.  Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures. , 2013, Nano letters.

[46]  Federico Capasso,et al.  Nanostructured holograms for broadband manipulation of vector beams. , 2013, Nano letters.

[47]  Min Seok Jang,et al.  Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. , 2013, Nano letters.

[48]  Eric Plum,et al.  An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. , 2013, Nature nanotechnology.

[49]  Ji Won Suk,et al.  Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared. , 2013, Nano letters.

[50]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[51]  T. Bourouina,et al.  Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy , 2012, Nature Communications.

[52]  Zhixin Xu,et al.  Electro-optical effects in strain-compensated InGaAs/InAlAs coupled quantum wells with modified potential. , 2010, Optics letters.

[53]  H. Atwater,et al.  Frequency tunable near-infrared metamaterials based on VO2 phase transition. , 2009, Optics express.

[54]  D. Miller,et al.  Strong quantum-confined Stark effect in germanium quantum-well structures on silicon , 2005, Nature.

[55]  Hooman Mohseni,et al.  Enhanced electro-optic effect in GaInAsP–InP three-step quantum wells , 2004 .

[56]  Yoshiaki Nakano,et al.  Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential , 1998 .

[57]  S. Adachi,et al.  Spectroscopic ellipsometry and thermoreflectance of GaAs , 1995 .

[58]  J. Shim,et al.  Refractive index and loss changes produced by current injection in InGaAs(P)-InGaAsP multiple quantum-well (MQW) waveguides , 1995 .

[59]  P. Bhattacharya,et al.  High-field transport in InGaAs/InAlAs modulation-doped heterostructures , 1987, IEEE Transactions on Electron Devices.

[60]  Niloy K. Dutta,et al.  Carrier induced refractive index change in AlGaAs quantum well lasers , 1984 .

[61]  Karl Hess,et al.  High field transport in GaAs, InP and InAs , 1984 .

[62]  H. Casey,et al.  Concentration‐dependent absorption and spontaneous emission of heavily doped GaAs , 1976 .

[63]  Federico Capasso,et al.  A broadband achromatic metalens for focusing and imaging in the visible , 2018, Nature Nanotechnology.