Thermal interface materials for automotive electronic control unit: Trends, technology and R&D challenges

Abstract The under-hood automotive ambient is harsh and its impact on electronics used in electronic control unit (ECU) assembly is a concern. The introduction of Euro 6 standard (Latest European Union Legislation) leading to increase in power density of power electronics in ECU has even amplified the device thermal challenge. Heat generated within the unit coupled with ambient temperature makes the system reliability susceptible to thermal degradation which ultimately may result in failure. Previous investigations show that the technology of thermal interface materials (TIMs) is a key to achieving good heat conductions within a package and from a package to heat sinking device. With studies suggesting that current TIMs contribute about 60% interfacial thermal resistance, a review of engineering materials has become imperative to identify TIM that could enhance heat transfer. This paper critically reviews the state-of-the-art in TIMs which may be applicable to automotive ECU. Our review shows that carbon-nanotube (CNT) when used as the structure of TIM or TIM filler could considerably advance thermal management issues by improving heat dissipation from the ECU. This search identifies chemical vapor deposition (CVD) as a low cost process for the commercial production of CNTs. In addition, this review further highlights the capability of CVD to grow nanotubes directly on a desired substrate. Other low temperature techniques of growing CNT on sensitive substrates are also presented in this paper.

[1]  Karl Schulte,et al.  Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites , 2003 .

[2]  Dresselhaus,et al.  Thermal conductivity and Raman spectra of carbon fibers. , 1985, Physical review. B, Condensed matter.

[3]  J. Coleman,et al.  Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites , 2002 .

[4]  K. Goodson,et al.  Thermal conductance enhancement of particle-filled thermal interface materials using carbon nanotube inclusions , 2004, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).

[5]  A. Rao,et al.  Impact response by a foamlike forest of coiled carbon nanotubes , 2006 .

[6]  Ado Jorio,et al.  UNUSUAL PROPERTIES AND STRUCTURE OF CARBON NANOTUBES , 2004 .

[7]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[8]  Sankara J. Subramanian,et al.  Mechanical Modeling of a Solder Thermal Interface Material: Implications for Thermo-Mechanical Reliability , 2005 .

[9]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[10]  S. Fan,et al.  The Carbon Nanotube Based Nanocomposite with Enhanced Thermal Conductivity , 2007 .

[11]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[12]  K. Goodson,et al.  Managing heat for electronics , 2005 .

[13]  Fay Hua,et al.  The material optimization and reliability characterization of an indium-solder thermal interface material for CPU packaging , 2006 .

[14]  Xianfan Xu,et al.  Effects of Growth Temperature on Carbon Nanotube Array Thermal Interfaces , 2008 .

[15]  P. Thompson,et al.  Reliability of flip chip packages with high thermal conductivity heat spreader attach , 2008, 2008 58th Electronic Components and Technology Conference.

[16]  Otto Zhou,et al.  Deformation of carbon nanotubes in nanotube–polymer composites , 1999 .

[17]  Amy S. Fleischer,et al.  The effect of die attach voiding on the thermal resistance of chip level packages , 2006, Microelectron. Reliab..

[18]  Jun Xu,et al.  Enhanced thermal contact conductance using carbon nanotube array interfaces , 2006, IEEE Transactions on Components and Packaging Technologies.

[19]  H. Garmestani,et al.  Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing , 2003 .

[20]  G. Scuseria,et al.  Single-Walled Carbon Nanotube±Polymer Composites: Strength and Weakness** , 2022 .

[21]  Peter J. F. Harris,et al.  Carbon nanotube composites , 2004 .

[22]  Michael L. Simpson,et al.  Vertically Aligned Carbon Nanofibers and Related Structures: Controlled Synthesis and Directed Assembly , 2005 .

[23]  Omkaram Nalamasu,et al.  Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. , 2007, Nature nanotechnology.

[24]  Ernesto Gutiérrez González,et al.  Development of the management strategies of the ECU for an internal combustion engine: Computer simulation , 2008 .

[25]  Kaushik Rajashekara,et al.  Evaluation of Power Devices for Automotive Hybrid and 42V Based Systems , 2004 .

[26]  Shoushan Fan,et al.  Thermal conductivity improvement of silicone elastomer with carbon nanotube loading , 2004 .

[27]  A. Majumdar,et al.  Multiwalled Carbon Nanotube/nanofiber Arrays as Conductive and Dry Adhesive Interface Materials , 2004 .

[28]  P. Watts,et al.  LETTER TO THE EDITOR: Behaviours of embedded carbon nanotubes during film cracking , 2003 .

[29]  K. Goodson,et al.  3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon , 2006 .

[30]  T. H. Ng,et al.  Indium solder as a thermal interface material using fluxless bonding technology , 2009, 2009 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium.

[31]  K. Goodson,et al.  Thermal characterization of eutectic alloy thermal interface materials with void-like inclusions , 2004, Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (IEEE Cat. No.04CH37545).

[32]  M. Yovanovich,et al.  Calculating interface resistance , 2004 .

[33]  P. Ajayan,et al.  Applications of Carbon Nanotubes , 2001 .

[34]  Xianfan Xu,et al.  Increased real contact in thermal interfaces: A carbon nanotube/foil material , 2007 .

[35]  T. L. Tansley,et al.  Conductivity degradation in oxygen‐aged polypyrrole , 1991 .

[36]  Sean C. Smith,et al.  Van der Waals-corrected density functional theory: benchmarking for hydrogen–nanotube and nanotube–nanotube interactions , 2005, Nanotechnology.

[37]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[38]  C. Bailey,et al.  Thermal Management Technologies for Electronic Packaging: Current Capabilities and Future Challenges for Modelling Tools , 2008, 2008 10th Electronics Packaging Technology Conference.

[39]  Performance improvement of stacked graphite sheets for cooling applications , 2008, 2008 58th Electronic Components and Technology Conference.

[40]  Gehan A. J. Amaratunga,et al.  Carbon nanotube technology for solid state and vacuum electronics , 2004 .

[41]  T. Fisher,et al.  Dendrimer-assisted low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. , 2006, Chemical communications.

[42]  R. L. Webb,et al.  Performance and testing of thermal interface materials , 2003, Microelectron. J..

[43]  C. Daraio,et al.  Highly nonlinear contact interaction and dynamic energy dissipation by forest of carbon nanotubes , 2004 .

[44]  D. Srivastava,et al.  Molecular dynamics simulation of heat pulse propagation in single-wall carbon nanotubes , 2005 .

[45]  Maurizio Prato,et al.  Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites , 2002, Nature materials.

[46]  Minoru Taya,et al.  Design of thermal interface material with high thermal conductivity and measurement apparatus , 2006 .

[47]  Xianfan Xu,et al.  Dendrimer-assisted controlled growth of carbon nanotubes for enhanced thermal interface conductance , 2007 .

[48]  B. Rauch Understanding the performance characteristics of phase-change thermal interface materials , 2000, ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069).

[49]  Wei Lin,et al.  Vertically aligned carbon nanotubes for thermal interface materials: Quality control, alignment improvement and laser flash measurement , 2010, 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC).

[50]  Ravi Prasher,et al.  Surface Chemistry and Characteristics Based Model for the Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials , 2001 .

[51]  A Statistical Analysis of Thermal Interface Materials Enhanced by Vertically Aligned Carbon Nanotubes , 2006, Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006..

[52]  R. Andrews,et al.  Multiwall Carbon Nanotubes: Synthesis and Application , 2003 .

[53]  K. Lafdi,et al.  The effect of a CNT interface on the thermal resistance of contacting surfaces , 2007 .

[54]  Ravi Prasher,et al.  Thermal Interface Materials: Historical Perspective, Status, and Future Directions , 2006, Proceedings of the IEEE.

[55]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[56]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[57]  Kyeongjae Cho,et al.  Nanomechanics of carbon nanotubes and composites , 2003 .

[58]  J. Robertson,et al.  Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation , 2003 .

[59]  R. Tummala,et al.  Co-electrodeposited graphite and diamond-loaded solder nanocomposites as thermal interface materials , 2010, 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC).

[61]  W. Hoenlein,et al.  Carbon nanotube applications in microelectronics , 2004, IEEE Transactions on Components and Packaging Technologies.

[62]  Gamal Refai-Ahmed,et al.  Comparison of Thermal Performance of Current High-End Thermal Interface Materials , 2007 .

[63]  Jun Xu,et al.  Photoacoustic characterization of carbon nanotube array thermal interfaces , 2007 .

[64]  J. Jiao,et al.  Mechanical behavior of a carbon nanotube turf , 2007 .

[65]  R. Boudreau Foreword contributions from the 50th electronic components and technology conference , 2001 .

[66]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[67]  Lingbo Zhu,et al.  Assembling Carbon Nanotube Films as Thermal Interface Materials , 2007, 2007 Proceedings 57th Electronic Components and Technology Conference.

[68]  Heremans,et al.  Thermal conductivity and thermopower of vapor-grown graphite fibers. , 1985, Physical review. B, Condensed matter.

[69]  Wolfgang Fichtner,et al.  Modelling thermal effects of large contiguous voids in solder joints , 1999 .

[70]  Chia-Pin Chiu,et al.  Characterization of solder interfaces using laser flash metrology , 2002, Microelectron. Reliab..

[71]  B. Sammakia,et al.  Modeling Heat Transport in Thermal Interface Materials Enhanced With MEMS-Based Microinterconnects , 2010, IEEE Transactions on Components and Packaging Technologies.

[72]  P. Ajayan,et al.  Processing and Mechanical Properties of C‐Nanotube Reinforced Alumina Composites , 2008 .

[73]  Kankanhalli N. Seetharamu,et al.  Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes , 2005 .

[74]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[75]  Sandeep Tonapi,et al.  An overview of thermal management for next generation microelectronic devices , 2003, Advanced Semiconductor Manufacturing Conference and Workshop, 2003 IEEEI/SEMI.

[76]  Ndy Ekere,et al.  Investigation of thermal management materials for automotive electronic control units , 2011 .

[77]  S. Namilae,et al.  Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension , 1998 .

[78]  J. Robertson,et al.  Low-temperature plasma enhanced chemical vapour deposition of carbon nanotubes , 2004 .

[79]  C.M. Johnson,et al.  Effective thermal conductivity of porous solder layers , 2004, IEEE Transactions on Components and Packaging Technologies.

[80]  D. Chung Thermal interface materials , 2001, Electric and Hybrid Vehicle Technology International.

[81]  Kyeongjae Cho,et al.  Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites , 2002, cond-mat/0203349.

[82]  B. Michel,et al.  High-performance thermal interface technology overview , 2007, 2007 13th International Workshop on Thermal Investigation of ICs and Systems (THERMINIC).

[83]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[84]  Kai Zhang,et al.  Study on Thermal Interface Material with Carbon Nanotubes and Carbon Black in High-Brightness LED Packaging with Flip-Chip , 2005, Proceedings Electronic Components and Technology, 2005. ECTC '05..

[85]  S. Narumanchi,et al.  Thermal interface materials for power electronics applications , 2008, 2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

[86]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[87]  C. Shearwood,et al.  Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films , 2002 .

[88]  M. Meyyappan,et al.  Thermal Interface Properties of Cu-filled Vertically Aligned Carbon Nanofiber Arrays , 2004 .

[89]  Jing Sun,et al.  Reinforcement of alumina matrix with multi-walled carbon nanotubes , 2005 .

[90]  D.D.L. Chung,et al.  Effect of the thickness of a thermal interface material (solder) on heat transfer between copper surfaces , 2001 .

[91]  P. Chan,et al.  Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling , 2008, Nanotechnology.

[92]  Transient thermal management using phase change materials with embedded graphite nanofibers for systems with high power requirements , 2008, 2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

[93]  M. Touzelbaev,et al.  Indium thermal interface material development for microprocessors , 2009, 2009 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium.

[94]  C.P. Wong,et al.  In-situ opening aligned carbon nanotube films/arrays for multichannel ballistic transport in electrical interconnect , 2006, 56th Electronic Components and Technology Conference 2006.

[95]  K. Zhang,et al.  Thermal interface material with aligned CNT and its application in HB-LED packaging , 2006, 56th Electronic Components and Technology Conference 2006.

[96]  Mehrdad N. Ghasemi-Nejhad,et al.  Super‐Compressible Foamlike Carbon Nanotube Films. , 2006 .

[97]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[98]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[99]  M. Meyyappan,et al.  Thermal Conductivity of Carbon Nanotube Composite Films , 2004 .

[100]  Reshef Tenne,et al.  Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix , 1998 .

[101]  D. Chua,et al.  A Carbon Nanomattress: A New Nanosystem with Intrinsic, Tunable, Damping Properties , 2007 .

[102]  Jean C. Huie,et al.  Thermal conductivity of an aligned carbon nanotube array , 2007 .

[103]  P. Conway,et al.  Thermal Interface Materials - A Review of the State of the Art , 2006, 2006 1st Electronic Systemintegration Technology Conference.

[104]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[105]  A. Majumdar,et al.  Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials , 2007, IEEE Transactions on Components and Packaging Technologies.

[106]  Juei-Chun Chiang Design and characterization of nanowire array as thermal interface material for electronics packaging , 2009 .

[107]  Jun Xu,et al.  Enhancement of thermal interface materials with carbon nanotube arrays , 2006 .

[108]  Arun S. Mujumdar,et al.  Application of phase change materials in thermal management of electronics , 2007 .

[109]  M. Zhang,et al.  Carbon Nanotube/Copper Composites for Via Filling and Thermal Management , 2007, 2007 Proceedings 57th Electronic Components and Technology Conference.

[110]  S. Reich,et al.  Elastic properties of carbon nanotubes under hydrostatic pressure , 2002 .

[111]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[112]  Patrick E. Phelan,et al.  Percolation theory applied to the analysis of thermal interface materials in flip-chip technology , 2000, ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069).

[113]  Sajad Haq,et al.  Large-area synthesis of carbon nanofibres at room temperature , 2002, Nature materials.

[114]  R. Viswanath Thermal Performance Challenges from Silicon to Systems , 2000 .