Option pricing under a normal mixture distribution derived from the Markov tree model

We examine a Markov tree (MT) model for option pricing in which the dynamics of the underlying asset are modeled by a non-IID process. We show that the discrete probability mass function of log returns generated by the tree is closely approximated by a continuous mixture of two normal distributions. Using this normal mixture distribution and risk-neutral pricing, we derive a closed-form expression for European call option prices. We also suggest a regression tree-based method for estimating three volatility parameters σ, σ+, and σ− required to apply the MT model. We apply the MT model to price call options on 89 non-dividend paying stocks from the S&P 500 index. For each stock symbol on a given day, we use the same parameters to price options across all strikes and expires. Comparing against the Black–Scholes model, we find that the MT model’s prices are closer to market prices.

[1]  S. Heston,et al.  A Closed-Form GARCH Option Valuation Model , 2000 .

[2]  S. Lang,et al.  An Introduction to Fourier Analysis and Generalised Functions , 1959 .

[3]  Giovanni Barone-Adesi,et al.  Arbitrage Equilibrium with Skewed Asset Returns , 1985, Journal of Financial and Quantitative Analysis.

[4]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[5]  John A. D. Appleby,et al.  A Black--Scholes Model with Long Memory , 2012, 1202.5574.

[6]  Mrinal K. Ghosh,et al.  Asymptotic analysis of option pricing in a Markov modulated market , 2009, Oper. Res. Lett..

[7]  Tao Pang,et al.  An approximation scheme for Black-Scholes equations with delays , 2010, J. Syst. Sci. Complex..

[8]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[9]  M. Chang,et al.  Infinite-Dimensional Black-Scholes Equation with Hereditary Structure , 2007 .

[10]  Steven Kou,et al.  Option Pricing Under a Mixed-Exponential Jump Diffusion Model , 2011, Manag. Sci..

[11]  Weiping Li,et al.  Jump-Diffusion Option Pricing without IID Jumps , 2008 .

[12]  T. N. Bhargava,et al.  The Behavior of Stock-Price Relatives - A Markovian Analysis , 1973, Oper. Res..

[13]  Damiano Brigo,et al.  Lognormal-mixture dynamics and calibration to market volatility smiles , 2002 .

[14]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[15]  J. Bouchaud,et al.  Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management , 2011 .

[16]  Alessandro Ramponi Mixture Dynamics and Regime Switching Diffusions with Application to Option Pricing , 2011 .

[17]  Tao Pang,et al.  A Stochastic Portfolio Optimization Model with Bounded Memory , 2011, Math. Oper. Res..

[18]  F. Longin,et al.  The choice of the distribution of asset returns: How extreme value theory can help? , 2005 .

[19]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[20]  John A. D. Appleby,et al.  Bubbles and crashes in a Black–Scholes model with delay , 2013, Finance Stochastics.

[21]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[22]  Jens Carsten Jackwerth,et al.  Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review , 1999 .

[23]  Stefano M. Iacus European Option Pricing , 2011 .

[24]  Jacques Janssen,et al.  Markov and semi-Markov option pricing models with arbitrage possibility , 1997 .

[25]  George H. Weiss,et al.  Book Review: Elements of the Random Walk: An Introduction for Advanced Students and Researchers , 2005 .

[26]  Rogemar S. Mamon,et al.  Explicit solutions to European options in a regime-switching economy , 2005, Oper. Res. Lett..

[27]  Rajeev Motwani,et al.  A simple approach for pricing equity options with Markov switching state variables , 2006 .

[28]  Harish S. Bhat,et al.  Markov tree options pricing , 2010 .

[29]  Jacques Janssen,et al.  European and American options: The semi-Markov case , 2009 .

[30]  Jianhong Wu,et al.  The pricing of options for securities markets with delayed response , 2007, Math. Comput. Simul..

[31]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[32]  Stephen J. Taylor Introduction to Asset Price Dynamics, Volatility, and Prediction , 2007 .

[33]  G. W. Inverarity,et al.  Numerically inverting a class of singular Fourier transforms: theory and application to mountain waves , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  E. Fama EFFICIENT CAPITAL MARKETS: A REVIEW OF THEORY AND EMPIRICAL WORK* , 1970 .

[35]  Andreas Behr,et al.  Alternatives to the normal model of stock returns: Gaussian mixture, generalised logF and generalised hyperbolic models , 2009 .

[36]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[37]  Wu Meng,et al.  European option pricing with time delay , 2008, 2008 27th Chinese Control Conference.

[38]  Kangrong Tan,et al.  Estimation of Portfolio Return and Value at Risk Using a Class of Gaussian Mixture Distributions , 2012 .

[39]  S. Shreve Stochastic calculus for finance , 2004 .

[40]  David Saunders,et al.  Portfolio optimization when asset returns have the Gaussian mixture distribution , 2008, Eur. J. Oper. Res..

[41]  T. Andersen THE ECONOMETRICS OF FINANCIAL MARKETS , 1998, Econometric Theory.

[42]  R. J. Ritchey,et al.  CALL OPTION VALUATION FOR DISCRETE NORMAL MIXTURES , 1990 .

[43]  John,et al.  Stochatic Delay Difference and Differential Equations. , 2010 .

[44]  Stanley J. Kon Models of Stock Returns—A Comparison , 1984 .

[45]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .

[46]  Yaozhong Hu,et al.  A Delayed Black and Scholes Formula , 2006, math/0604640.

[47]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[48]  Bruce D. Fielitz On the Stationarity of Transition Probability Matrices of Common Stocks , 1975 .

[49]  M. Osborne,et al.  Market Making and Reversal on the Stock Exchange , 1966 .

[50]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[51]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .