Fluorescence Imaging of Bacterial Killing by Antimicrobial Peptide Dendrimer G3KL.

we recently discovered that peptide dendrimers such as G3KL ((KL)8(KKL)4(KKL)2KKL, K = branching L-lysine) exert strong activity against Gram-negative bacteria including Pseudomonas aeruginosa, Acinetobacter baumannii and Escherichia coli. Herein we report a detailed mechanistic study using fluorescence labeled analogs bearing fluorescein (G3KL-Fluo) or dansyl (G3KL-Dansyl), which show a similar bioactivity profile as G3KL. Imaging bacterial killing by super-resolution stimulated emission depletion (STED) microscopy, time-lapse imaging and transmission electron microscopy (TEM) reveals that the dendrimer localizes at the bacterial membrane, induces membrane depolarization and permeabilization, and destroys the outer leaflet and the inner membrane. G3KL accumulates in bacteria against which it is active, however it only weakly penetrates into eukaryotic cells without inducing significant toxicity. G3KL furthermore binds to lipopolysaccharide (LPS) and inhibits LPS induced release of TNF-α by macrophages similarly to polymyxin B. Taken together, these experiments show that G3KL behaves as a potent membrane disruptive antimicrobial peptide.

[1]  T. Lu,et al.  Peptide Design Principles for Antimicrobial Applications. , 2019, Journal of molecular biology.

[2]  J. Reymond,et al.  Peptide dendrimers G3KL and TNS18 inhibit Pseudomonas aeruginosa biofilms , 2019, Applied Microbiology and Biotechnology.

[3]  J. Reymond,et al.  Antimicrobial Peptide Dendrimer Chimera , 2019, Helvetica Chimica Acta.

[4]  J. Vederas,et al.  The expanding structural variety among bacteriocins from Gram-positive bacteria. , 2018, FEMS microbiology reviews.

[5]  J. Reymond,et al.  Optimizing Antimicrobial Peptide Dendrimers in Chemical Space. , 2018, Angewandte Chemie.

[6]  Jean-Louis Reymond,et al.  Lipidated Peptide Dendrimers Killing Multidrug-Resistant Bacteria. , 2018, Journal of the American Chemical Society.

[7]  J. L. T. Tjeerdsma-van Bokhoven,et al.  Imaging the antimicrobial mechanism(s) of cathelicidin-2 , 2016, Scientific Reports.

[8]  G. Qiao,et al.  Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers , 2016, Nature Microbiology.

[9]  N. Malanovic,et al.  Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. , 2016, Biochimica et biophysica acta.

[10]  L. Hamoen,et al.  Analysis of Antimicrobial-Triggered Membrane Depolarization Using Voltage Sensitive Dyes , 2016, Front. Cell Dev. Biol..

[11]  Dominique P. Pioletti,et al.  Anti-Microbial Dendrimers against Multidrug-Resistant P. aeruginosa Enhance the Angiogenic Effect of Biological Burn-wound Bandages , 2016, Scientific Reports.

[12]  L. Otvos,et al.  Multimerization of a Proline-Rich Antimicrobial Peptide, Chex-Arg20, Alters Its Mechanism of Interaction with the Escherichia coli Membrane. , 2015, Chemistry & biology.

[13]  H. Jenssen,et al.  Peptides and Peptidomimetics for Antimicrobial Drug Design , 2015, Pharmaceuticals.

[14]  J. Reymond,et al.  Combining topology and sequence design for the discovery of potent antimicrobial peptide dendrimers against multidrug-resistant Pseudomonas aeruginosa. , 2014, Angewandte Chemie.

[15]  Yoonkyung Park,et al.  How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23. , 2014, ACS chemical biology.

[16]  H. Mukundan,et al.  Lipopolysaccharide-induced dynamic lipid membrane reorganization: tubules, perforations, and stacks. , 2014, Biophysical journal.

[17]  Jesmin Akter,et al.  Probing the Penetration of Antimicrobial Polymyxin Lipopeptides into Gram-Negative Bacteria , 2014, Bioconjugate chemistry.

[18]  Q. Ma,et al.  Antimicrobial Properties and Membrane-Active Mechanism of a Potential α-Helical Antimicrobial Derived from Cathelicidin PMAP-36 , 2014, PloS one.

[19]  J. Reymond,et al.  Expanding the topological space of bioactive peptides. , 2014, Chimia.

[20]  Y. Negishi,et al.  Maleylated-BSA induces TNF-α production through the ERK and NF-κB signaling pathways in murine RAW264.7 macrophages , 2013 .

[21]  J. Reymond,et al.  Convergent synthesis and cellular uptake of multivalent cell penetrating peptides derived from Tat, Antp, pVEC, TP10 and SAP. , 2013, Organic & biomolecular chemistry.

[22]  J. Shaevitz,et al.  Fast, Multiphase Volume Adaptation to Hyperosmotic Shock by Escherichia coli , 2012, PloS one.

[23]  J. Reymond,et al.  Peptide and glycopeptide dendrimer apple trees as enzyme models and for biomedical applications. , 2012, Organic & biomolecular chemistry.

[24]  A. Kozlov,et al.  SSB-DNA binding monitored by fluorescence intensity and anisotropy. , 2012, Methods in molecular biology.

[25]  Marco M. Domingues,et al.  Biophysical characterization of polymyxin B interaction with LPS aggregates and membrane model systems. , 2012, Biopolymers.

[26]  H. Vogel,et al.  The expanding scope of antimicrobial peptide structures and their modes of action. , 2011, Trends in biotechnology.

[27]  R. Bucki,et al.  Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37 , 2011, Proceedings of the National Academy of Sciences.

[28]  E S Bishop,et al.  Characterization of PicoGreen interaction with dsDNA and the origin of its fluorescence enhancement upon binding. , 2010, Biophysical journal.

[29]  Jian Li,et al.  Structure--activity relationships of polymyxin antibiotics. , 2010, Journal of medicinal chemistry.

[30]  G. J. Gabriel,et al.  Stimuli-Responsive Polyguanidino-Oxanorbornene Membrane Transporters as Multicomponent Sensors in Complex Matrices , 2008, Journal of the American Chemical Society.

[31]  S. Opal The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis. , 2007, International journal of medical microbiology : IJMM.

[32]  Joanna Trylska,et al.  Binding of aminoglycosidic antibiotics to the oligonucleotide A-site model and 30S ribosomal subunit: Poisson-Boltzmann model, thermal denaturation, and fluorescence studies. , 2006, Journal of medicinal chemistry.

[33]  W. Shafer,et al.  Antimicrobial peptides and endotoxin inhibit cytokine and nitric oxide release but amplify respiratory burst response in human and murine macrophages , 2005, Cellular microbiology.

[34]  Z. Wasylewski,et al.  Fluorescence quenching and kinetic studies of conformational changes induced by DNA and cAMP binding to cAMP receptor protein from Escherichia coli , 2005, The FEBS journal.

[35]  A. Iwasaki,et al.  Toll-like receptor control of the adaptive immune responses , 2004, Nature Immunology.

[36]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[37]  T. Tani,et al.  Lipopolysaccharide: neutralization by polymyxin B shuts down the signaling pathway of nuclear factor kappaB in peripheral blood mononuclear cells, even during activation. , 2001, The Journal of surgical research.

[38]  T. Mattila-Sandholm,et al.  Fluorometric assessment of Gram‐negative bacterial permeabilization , 2000, Journal of applied microbiology.

[39]  Itzhak Fishov,et al.  Visualization of membrane domains in Escherichia coli , 1999, Molecular microbiology.

[40]  H. Nikaido,et al.  Prevention of drug access to bacterial targets: permeability barriers and active efflux. , 1994, Science.

[41]  R. Lindemann Bacterial activation of human natural killer cells: role of cell surface lipopolysaccharide , 1988, Infection and immunity.