Variational formulation for every nonlinear problem

Abstract It is shown that for every linear or nonlinear problem, whose solution exists and is unique, one may find many functionals whose minimum is the solution of the problem. They are obtained after a transformation of the given problem into another by the application of an “integrating operator”: this transforms a differential problem into an integro-differential one. The procedure used to obtain such functionals is straightforward and is described in detail. Examples are exhibited and the numerical effectiveness of the method is tested. The variational formulation so obtained contains the classical formulation as a particular case when it exists.

[1]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[2]  Die Differentiale in Der Allgemeinen Analysis , 1933 .

[3]  P. Havas The range of application of the lagrange formalism — I , 1957 .

[4]  P. R. Adby,et al.  Introduction to optimization methods , 1974 .

[5]  Jesse Douglas Solution of the inverse problem of the calculus of variations , 1941 .

[6]  E. Tonti The reason for analogies between physical theories , 1976 .

[7]  H. H. Schaefer,et al.  Topological Vector Spaces , 1967 .

[8]  Louis B. Rall,et al.  Nonlinear Functional Analysis and Applications , 1971 .

[9]  Y. C. Fung,et al.  Foundation of Solid Mechanics , 1966 .

[10]  Marston Morse The Calculus of Variations in the Large , 1934 .

[11]  E. Haug,et al.  Extremum principles for linear initial-value problems of mathematical physics , 1978 .

[12]  M. Gurtin,et al.  Variational principles for linear initial-value problems , 1964 .

[13]  L. Collatz The numerical treatment of differential equations , 1961 .

[14]  M. Morse The critical points of functions and the calculus of variations in the large , 1929 .

[15]  J. Oden,et al.  Variational Methods in Theoretical Mechanics , 1976 .

[16]  A. Feinstein,et al.  Variational Methods for the Study of Nonlinear Operators , 1966 .

[17]  L. E. Scriven,et al.  On the search for variational principles , 1967 .

[18]  Ismael Herrera,et al.  A simplified version of Gurtin's variational principles , 1974 .

[19]  Morton E. Gurtin,et al.  Variational principles in the linear theory of viscoelusticity , 1963 .

[20]  J. Gillis,et al.  Linear Differential Operators , 1963 .

[21]  S. G. Mikhlin,et al.  The problem of the minimum of a quadratic functional , 1965 .

[22]  S. Mikhlin,et al.  Variational Methods in Mathematical Physics , 1965 .

[23]  F. Takens A global version of the inverse problem of the calculus of variations , 1979 .

[24]  Tom Duchamp,et al.  On the Existence of Global Variational Principles , 1980 .

[25]  B. Finlayson Existence of Variational Principles for the Navier‐Stokes Equation , 1972 .

[26]  Vito Volterra,et al.  Lecons sur les fonctions de lignes , 1913 .

[27]  W. M. Tulczyjew The Lagrange complex , 1977 .

[28]  Daniel J. Kleitman,et al.  Heuristic Methods for Solving Large Scale Network Routing Problems: The Telpaking Problem , 1975 .

[29]  F. Magri Variational formulation for every linear equation , 1974 .

[30]  D. R. Davis The inverse problem of the calculus of variations in higher space , 1928 .