What is a Categorical Model of Intuitionistic Linear Logic?

This paper re-addresses the old problem of providing a categorical model for Intuitionistic Linear Logic (ILL). In particular we compare the now standard model proposed by Seely to the lesser known one proposed by Benton, Bierman, Hyland and de Paiva. Surprisingly we find that Seely's model is unsound in that it does not preserve equality of proofs. We shall propose how to adapt Seely's definition so as to correct this problem and consider how this compares with the model due to Benton et al.

[1]  S. Lane Categories for the Working Mathematician , 1971 .

[2]  Jean Gallier,et al.  Constructive Logics Part I: A Tutorial on Proof Systems and Typed gamma-Calculi , 1993, Theor. Comput. Sci..

[3]  Michael Barr,et al.  *-Autonomous categories and linear logic , 1991, Mathematical Structures in Computer Science.

[4]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[5]  A. Troelstra Lectures on linear logic , 1992 .

[6]  Jean-Yves Girard,et al.  Linear Logic and Lazy Computation , 1987, TAPSOFT, Vol.2.

[7]  R. A. G. Seely,et al.  Linear Logic, -Autonomous Categories and Cofree Coalgebras , 1989 .

[8]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[9]  Yves Lafont,et al.  The Linear Abstract Machine , 1988, Theor. Comput. Sci..

[10]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[11]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[12]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[13]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[14]  Yves Lafont The Linear Abstract Machine (Corrigenda) , 1988, Theor. Comput. Sci..

[15]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[16]  Valeria C V de Paiva,et al.  Term Assignment for Intuitionistic Linear Logic , 1992 .

[17]  Nick Benton,et al.  A Term Calculus for Intuitionistic Linear Logic , 1993, TLCA.

[18]  Nick Benton,et al.  A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract) , 1994, CSL.