Attitude tracking control of a quadrotor based on absolutely continuous fractional integral sliding modes

The model-free sliding mode control based on fractional order sliding surface is built upon: i) An absolutely continuous control structure that does not require the exact dynamic model to induce a fractional sliding motion in finite time, and ii) A methodology to design fractional references with a clear counterpart in the frequency domain is proposed. This in order to improve the system response, in particular the transient period, and to generate a high-performance during the sliding motion. Numerical simulations support the proposal and illustrates the closed-loop system, which provides a better insight of the proposed scheme.

[1]  YangQuan Chen,et al.  Fractional order control - A tutorial , 2009, 2009 American Control Conference.

[2]  J. A. Tenreiro Machado,et al.  Application of Fractional Controllers for Quad Rotor , 2011 .

[3]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[4]  Mehmet Önder Efe,et al.  Integral sliding mode control of a quadrotor with fractional order reaching dynamics , 2011 .

[5]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[6]  Shailaja Kurode,et al.  Fractional order sliding mode control for single link flexible manipulator , 2013, 2013 IEEE International Conference on Control Applications (CCA).

[7]  Alain Oustaloup,et al.  The CRONE toolbox for Matlab , 2000, CACSD. Conference Proceedings. IEEE International Symposium on Computer-Aided Control System Design (Cat. No.00TH8537).

[8]  YangQuan Chen,et al.  Numerical Issues and MATLAB Implementations for Fractional-order Control Systems , 2010 .

[9]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[10]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[11]  J. A. Tenreiro Machado,et al.  And I say to myself: “What a fractional world!” , 2011 .

[12]  J. W. Humberston Classical mechanics , 1980, Nature.

[13]  D. Valério INTRODUCING FRACTIONAL SLIDING MODE CONTROL , 2012 .

[14]  YangQuan Chen,et al.  Fractional-order systems and control : fundamentals and applications , 2010 .

[15]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[16]  Li Yuankai,et al.  Frequency domain analysis and applications for fractional-order control systems , 2005 .

[17]  A. Levant,et al.  ADJUSTMENT OF HIGH-ORDER SLIDING-MODE CONTROLLERS , 2005 .

[18]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[19]  M. V. Cook,et al.  Dynamics of Flight , 1997 .

[20]  Shouming Zhong,et al.  Design of sliding mode controller for a class of fractional-order chaotic systems , 2012 .

[21]  Yunhui Liu,et al.  Dynamic sliding PID control for tracking of robot manipulators: theory and experiments , 2003, IEEE Trans. Robotics Autom..

[22]  Bijnan Bandyopadhyay,et al.  Finite-Time Stabilization of Fractional Order Uncertain Chain of Integrator: An Integral Sliding Mode Approach , 2013, IEEE Transactions on Automatic Control.

[23]  Octavio Garcia,et al.  Toward Aerial Grasping and Manipulation with Multiple UAVs , 2013, J. Intell. Robotic Syst..

[24]  B. Ross,et al.  A BRIEF HISTORY AND EXPOSITION OF THE FUNDAMENTAL THEORY OF FRACTIONAL CALCULUS , 1975 .