Competition of L21 and XA structural ordering in Heusler alloys X2CuAl (X = Sc, Ti, V, Cr, Mn, Fe, Co, Ni)

Abstract A competition between the conventional L21 ordering and inverse XA ordering has been observed in Heusler alloys X2CuAl (X = Sc, Ti, V, Cr, Mn, Fe, Co, Ni). In X2CuAl, the site preference of Cu is strongly influenced by the crystal structure of pure X elements. When X element has a close-packed FCC or HCP structure (Sc, Ti, Co and Ni), Cu prefers entering the ( 1 4 , 1 4 , 1 4 ) position and forms the L21 structure, but when X has a BCC structure (V, Cr, Mn, Fe), Cu prefers entering the ( 1 2 , 1 2 , 1 2 ) position and forms the XA structure. So the crystal structure of pure X element should also be considered together with number of valence electrons when discussing the site preference in Heusler alloys. Mn2CuAl is found to be a spin gapless semiconductor (SGS) with fully-compensated total moment. Based on this, a possible rule to design SGS has been discussed. Finally, X2CuAl alloys all have a negative formation energy except for V2CuAl and Cr2CuAl.

[1]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[2]  F. Ahmadian,et al.  First principles study on half-metallic properties of Heusler compounds Ti2VZ (Z=Al, Ga, and In) , 2015 .

[3]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[4]  C. Felser,et al.  New Mn2-based Heusler Compounds† , 2014 .

[5]  Claudia Felser,et al.  Tunable multifunctional topological insulators in ternary Heusler compounds. , 2010, Nature materials.

[6]  W. Wang,et al.  A new spin gapless semiconductors family: Quaternary Heusler compounds , 2013, 1301.7488.

[7]  Xiaolin Wang,et al.  Proposal for a new class of materials: spin gapless semiconductors. , 2008, Physical review letters.

[8]  Songtao Li,et al.  Electronic structure and magnetism of Mn2CuAl: A first-principles study , 2009 .

[9]  F. Meng,et al.  Origin of the Z−28 rule in Mn2Cu-based Heusler alloys: A comparing study , 2012 .

[10]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[11]  M. Geisler,et al.  Phase stability of chromium based compensated ferrimagnets with inverse Heusler structure , 2013, 1302.2487.

[12]  Ab initio study of structural stability, elastic, vibrational, and electronic properties of TiPd2 , 2007 .

[13]  Guo-Dong Liu,et al.  Design Scheme of New Tetragonal Heusler Compounds for Spin-Transfer Torque Applications and its Experimental Realization , 2012, Advanced materials.

[14]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[15]  Joseph I. Budnick,et al.  Hyperfine Studies of Site Occupation in Ternary Systems , 1974 .

[16]  T Furubayashi,et al.  Demonstration of half-metallicity in fermi-level-tuned Heusler alloy Co2FeAl0.5Si0.5 at room temperature. , 2009, Physical review letters.

[17]  C. Felser,et al.  Iron-based Heusler compounds Fe2YZ: Comparison with theoretical predictions of the crystal structure and magnetic properties , 2013, 1301.1988.

[18]  C. Felser,et al.  Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias. , 2015, Nature materials.

[19]  Beatriz Cordero,et al.  Covalent radii revisited. , 2008, Dalton transactions.

[20]  Z. Feng,et al.  Phase stability and magnetic properties of the Heusler alloy Mn2CuAl ribbons , 2010 .

[21]  Claudia Felser,et al.  Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds , 2006, cond-mat/0611179.

[22]  G. Fecher,et al.  Disorder-induced cubic phase in Fe2-based Heusler alloys , 2013, 1302.0713.

[23]  M. Shirai,et al.  Mechanism of large magnetoresistance in Co 2 MnSi / Ag / Co 2 MnSi devices with current perpendicular to the plane , 2010 .

[24]  K. Özdoğan,et al.  Generalized Slater-Pauling rule for the inverse Heusler compounds , 2013 .

[25]  K.H.J. Buschow,et al.  New Class of Materials: Half-Metallic Ferromagnets , 1983 .

[26]  Haifeng Liu,et al.  Ab initio study of V2CuAl as a new ternary Heusler alloy , 2014 .

[27]  T. Hong,et al.  Ti‐Al金属間化合物TiAl3の結晶構造,相安定性および電子構造 , 1990 .

[28]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[29]  K. Özdoğan,et al.  Search for spin gapless semiconductors: The case of inverse Heusler compounds , 2012, 1210.5355.

[30]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[31]  G. Fecher,et al.  Realization of spin gapless semiconductors: the Heusler compound Mn2CoAl. , 2012, Physical review letters.

[32]  M. Diviš Ab-initio study of structural stability and magnetism of Ni2CuSn , 1996 .

[33]  G. Gao,et al.  Antiferromagnetic half-metals, gapless half-metals, and spin gapless semiconductors: The D03-type Heusler alloys , 2013 .