Transition‐Metal (Fe, Co, Ni) Based Metal‐Organic Frameworks for Electrochemical Energy Storage

Transition-metal (Fe, Co, Ni) based metal-organic framework materials with controllable structures, large surface areas and adjustable pore sizes have attracted wide research interest for use in next-generation electrochemical energy-storage devices. This review introduces the synthesis of transition-metal (Fe, Co, Ni) based metal-organic frameworks and their derivatives with the focus on their application in supercapacitors and batteries.

[1]  Jing Chen,et al.  Copper metal-organic framework nanocrystal for plane effect nonenzymatic electro-catalytic activity of glucose. , 2014, Nanoscale.

[2]  Ziqi Wang,et al.  Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal–organic framework method for lithium-ion cathode , 2014 .

[3]  Xiaofen Li,et al.  Progress of electrochemical capacitor electrode materials: A review , 2009 .

[4]  M. A. Kulandainathan,et al.  Diamondoid‐Structured Cu–Dicarboxylate‐based Metal–Organic Frameworks as High‐Capacity Anodes for Lithium‐Ion Storage , 2014 .

[5]  T. Akita,et al.  Metal-organic framework as a template for porous carbon synthesis. , 2008, Journal of the American Chemical Society.

[6]  Jun Chen,et al.  Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1,3,5-benzenetribenzoate)2 , 2006 .

[7]  J. Tarascon,et al.  Influence of the Benzoquinone Sorption on the Structure and Electrochemical Performance of the MIL-53(Fe) Hybrid Porous Material in a Lithium-Ion Battery , 2009 .

[8]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[9]  Shasha Zheng,et al.  Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors , 2016 .

[10]  Keiji Nakagawa,et al.  Heterogeneously hybridized porous coordination polymer crystals: fabrication of heterometallic core-shell single crystals with an in-plane rotational epitaxial relationship. , 2009, Angewandte Chemie.

[11]  Xiaohong Xu,et al.  3D hierarchical porous ZnO/ZnCo2O4 nanosheets as high-rate anode material for lithium-ion batteries , 2016 .

[12]  Q. Qu,et al.  Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage , 2014 .

[13]  N. K. Shrestha,et al.  Supercapacitive property of metal–organic-frameworks with different pore dimensions and morphology , 2013 .

[14]  Yuanjian Zhang,et al.  Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs). , 2011, Chemical communications.

[15]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[16]  Yunhui Huang,et al.  Metal-organic framework derived ZnO/ZnFe2O4/C nanocages as stable cathode material for reversible lithium-oxygen batteries. , 2015, ACS applied materials & interfaces.

[17]  Huanwen Wang,et al.  Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life , 2015 .

[18]  Krista S. Walton,et al.  Nickel-based pillared MOFs for high-performance supercapacitors: Design, synthesis and stability study , 2016 .

[19]  C. Su,et al.  Exceptionally stable, hollow tubular metal-organic architectures: synthesis, characterization, and solid-state transformation study. , 2004, Journal of the American Chemical Society.

[20]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[21]  K. Zhou,et al.  Zeolitic imidazolate framework 67-derived high symmetric porous Co₃O₄ hollow dodecahedra with highly enhanced lithium storage capability. , 2014, Small.

[22]  Yunfeng Shi,et al.  Porous nickel oxide microflowers synthesized by calcination of coordination microflowers and their applications as glutathione electrochemical sensor and supercapacitors , 2012 .

[23]  Derrek E. Lobo,et al.  Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: more than the sum of its parts. , 2015, ACS applied materials & interfaces.

[24]  Deyu Wang,et al.  Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries , 2016 .

[25]  Huanlei Wang,et al.  Asymmetric capacitor based on superior porous Ni–Zn–Co oxide/hydroxide and carbon electrodes , 2010 .

[26]  Huaiguo Xue,et al.  Copper‐Based Nanomaterials for High‐Performance Lithium‐Ion Batteries , 2016 .

[27]  Yutao Li,et al.  A nickel-based metal-organic framework: A novel optimized anode material for Li-ion batteries , 2015 .

[28]  R. Mokaya,et al.  Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework , 2012 .

[29]  R. Banerjee,et al.  Porous Carbons from Nonporous MOFs: Influence of Ligand Characteristics on Intrinsic Properties of End Carbon , 2013 .

[30]  M. Stanley Whittingham,et al.  Materials Challenges Facing Electrical Energy Storage , 2008 .

[31]  Huaihao Zhang,et al.  Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)-assisted synthesis of graphene/polyaniline composites as high-performance supercapacitor electrodes , 2016, Journal of Materials Science.

[32]  R. Sun,et al.  Large-scale fabrication of porous carbon-decorated iron oxide microcuboids from Fe–MOF as high-performance anode materials for lithium-ion batteries , 2015 .

[33]  T. Akita,et al.  Metal‐Organic Framework‐Derived Honeycomb‐Like Open Porous Nanostructures as Precious‐Metal‐Free Catalysts for Highly Efficient Oxygen Electroreduction , 2016, Advanced materials.

[34]  G. Diao,et al.  One-step facile solvothermal synthesis of copper ferrite-graphene composite as a high-performance supercapacitor material. , 2015, ACS applied materials & interfaces.

[35]  Ki‐Hyun Kim,et al.  Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates , 2016 .

[36]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[37]  Krista S. Walton,et al.  Kinetic water stability of an isostructural family of zinc-based pillared metal-organic frameworks. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[38]  Liang Jiang,et al.  Mesoporous graphitic carbon nanodisks fabricated via catalytic carbonization of coordination polymers. , 2012, Chemical communications.

[39]  Jonathan E. Halls,et al.  Conformal transformation of [Co(bdc)(DMF)] (Co-MOF-71, bdc = 1,4-benzenedicarboxylate, DMF = N,N-dimethylformamide) into porous electrochemically active cobalt hydroxide , 2013 .

[40]  H. Pang,et al.  Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties. , 2009, Chemical communications.

[41]  Ping He,et al.  A lithium–air capacitor–battery based on a hybrid electrolyte , 2011 .

[42]  M. Allendorf,et al.  Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metal−Organic Framework , 2010 .

[43]  Thomas A. Yersak,et al.  MIL-101(Fe) as a lithium-ion battery electrode material: a relaxation and intercalation mechanism during lithium insertion , 2015 .

[44]  Qiang Xu,et al.  Metal–organic frameworks as platforms for clean energy , 2013 .

[45]  Wei Xia,et al.  Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion , 2015 .

[46]  Yun Qiao,et al.  MOF-derived cobalt-doped ZnO@C composites as a high-performance anode material for lithium-ion batteries. , 2014, ACS applied materials & interfaces.

[47]  A. Burke Ultracapacitors: why, how, and where is the technology , 2000 .

[48]  Yan Liu,et al.  Mesoporous metal-organic framework materials. , 2012, Chemical Society reviews.

[49]  Zhian Zhang,et al.  Hierarchical mesoporous γ-Fe2O3/carbon nanocomposites derived from metal organic frameworks as a cathode electrocatalyst for rechargeable Li-O2 batteries , 2014 .

[50]  Wei Huang,et al.  Porous hollow Co₃O₄ with rhombic dodecahedral structures for high-performance supercapacitors. , 2014, Nanoscale.

[51]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[52]  R. Holze,et al.  A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2 , 2009 .

[53]  B. Tang,et al.  Electrochemical performance of metal-organic framework synthesized by a solvothermal method for supercapacitors , 2013, Russian Journal of Electrochemistry.

[54]  Guoxiu Wang,et al.  Manganese-based layered coordination polymer: synthesis, structural characterization, magnetic property, and electrochemical performance in lithium-ion batteries. , 2013, Inorganic chemistry.

[55]  Zhaoqiang Li,et al.  Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries , 2016 .

[56]  L. Archer,et al.  SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries , 2011 .

[57]  B. Tang,et al.  Synthesis of nickel carbonate hydroxide/zeolitic imidazolate framework-8 as a supercapacitors electrode , 2014 .

[58]  Longwei Yin,et al.  Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4–ZnO–C on nickel foam as anodes for high performance lithium ion batteries , 2015 .

[59]  Peng Zhang,et al.  ZIF-derived porous carbon: a promising supercapacitor electrode material , 2014 .

[60]  S. Ogale,et al.  Superior lithium storage properties of α-Fe2O3 nano-assembled spindles , 2013 .

[61]  Rui Liu,et al.  MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors. , 2016, Dalton transactions.

[62]  R. Guo,et al.  Carbon-nanoparticles encapsulated in hollow nickel oxides for supercapacitor application , 2012 .

[63]  K. Zhou,et al.  In‐Situ Formation of Hollow Hybrids Composed of Cobalt Sulfides Embedded within Porous Carbon Polyhedra/Carbon Nanotubes for High‐Performance Lithium‐Ion Batteries , 2015, Advanced materials.

[64]  Kyung Min Choi,et al.  Supercapacitors of nanocrystalline metal-organic frameworks. , 2014, ACS nano.

[65]  Chao Yang,et al.  Facile synthesis of novel metal-organic nickel hydroxide nanorods for high performance supercapacitor , 2016 .

[66]  Qianwang Chen,et al.  MOF-derived self-assembled ZnO/Co3O4 nanocomposite clusters as high-performance anodes for lithium-ion batteries. , 2015, Dalton transactions.

[67]  Xingbin Yan,et al.  Superior asymmetric supercapacitor based on Ni-Co oxide nanosheets and carbon nanorods , 2014, Scientific Reports.

[68]  Youdou Zheng,et al.  Mesoporous iron oxide directly anchored on a graphene matrix for lithium-ion battery anodes with enhanced strain accommodation , 2013 .

[69]  Daliang Zhang,et al.  Porous ZnCo2O4 nanoparticles derived from a new mixed-metal organic framework for supercapacitors , 2015 .

[70]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[71]  Liangkui Zhu,et al.  Rational design and synthesis of NixCo3−xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors , 2015 .

[72]  C. O’Dwyer,et al.  Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance , 2014 .

[73]  Xin-bo Zhang,et al.  Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor , 2010 .

[74]  Kai Zhang,et al.  Recent Advances and Prospects of Cathode Materials for Sodium‐Ion Batteries , 2015, Advanced materials.

[75]  Soo Min Hwang,et al.  Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons , 2014 .

[76]  Jinhua Chen,et al.  Synthesis and electrochemical capacitive properties of nitrogen-doped porous carbon micropolyhedra by direct carbonization of zeolitic imidazolate framework-11 , 2015 .

[77]  Jiujun Zhang,et al.  Self-assembly formation of hollow Ni-Fe-O nanocage architectures by metal-organic frameworks with high-performance lithium storage , 2015, Scientific Reports.

[78]  Yong Wang,et al.  Metal-Organic-Frameworks Derivation of Mesoporous NiO Nanorod for High-Performance Lithium Ion Batteries , 2016 .

[79]  Xin-bo Zhang,et al.  Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated Co3O4 nanoparticles as an electrode material for lithium ion battery , 2010 .

[80]  Gang Yang,et al.  Design and self-assembly of metal-organic framework-derived porous Co3O4 hierarchical structures for lithium-ion batteries , 2016 .

[81]  D. Zhao,et al.  Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors , 2013 .

[82]  A. Xu,et al.  Synthesis of zinc oxide nanoparticles with strong, tunable and stable visible light emission by solid-state transformation of Zn(II)–organic coordination polymers , 2011 .

[83]  J. Fransaer,et al.  A Hybrid Supercapacitor based on Porous Carbon and the Metal‐Organic Framework MIL‐100(Fe) , 2014 .

[84]  Ping He,et al.  Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium–sulfur batteries , 2014 .

[85]  Huanlei Wang,et al.  Porous carbons prepared by using metal–organic framework as the precursor for supercapacitors , 2010 .

[86]  W. Goddard,et al.  Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life , 2015, Proceedings of the National Academy of Sciences.

[87]  Bo Wang,et al.  Metal–organic frameworks for energy storage: Batteries and supercapacitors , 2016 .

[88]  Haoqing Hou,et al.  Zn–Fe–ZIF-derived porous ZnFe2O4/C@NCNT nanocomposites as anodes for lithium-ion batteries , 2015 .

[89]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[90]  P. Balaya,et al.  Lithium storage in a metal organic framework with diamondoid topology – a case study on metal formates , 2010 .

[91]  Jinkui Feng,et al.  Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte , 2006 .

[92]  Huakun Liu,et al.  Superior sodium-ion storage performance of Co3O4@nitrogen-doped carbon: derived from a metal–organic framework , 2016 .

[93]  K. Ariga,et al.  Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. , 2012, Chemical communications.

[94]  Xiaoshuang Shen,et al.  One-pot construction of three dimensional CoMoO4/Co3O4 hybrid nanostructures and their application in supercapacitors , 2015 .

[95]  Haitao Jiang,et al.  Influence of surfactant CTAB on the electrochemical performance of manganese dioxide used as supercapacitor electrode material , 2012 .

[96]  Qianwang Chen,et al.  Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries. , 2015, Nanoscale.

[97]  J. Tarascon,et al.  Mixed-valence li/fe-based metal-organic frameworks with both reversible redox and sorption properties. , 2007, Angewandte Chemie.

[98]  H. Pang,et al.  Porous nickel oxide nanospindles with huge specific capacitance and long-life cycle , 2012 .

[99]  Jean-Marie Tarascon,et al.  Erratum: Li–O 2 and Li–S batteries with high energy storage , 2012 .

[100]  Lei Gou,et al.  One-pot synthesis of a metal–organic framework as an anode for Li-ion batteries with improved capacity and cycling stability , 2014 .

[101]  X. Lou,et al.  Iron‐Oxide‐Based Advanced Anode Materials for Lithium‐Ion Batteries , 2014 .

[102]  Hyunchul Kim,et al.  Sodium intercalation chemistry in graphite , 2015 .

[103]  Anjan Banerjee,et al.  Electrochemical capacitors: Technical challenges and prognosis for future markets , 2012 .

[104]  Lin Guo,et al.  Iron triad (Fe, Co, Ni) nanomaterials: structural design, functionalization and their applications. , 2015, Chemical Society reviews.

[105]  F. Jaouen,et al.  Metal organic frameworks for electrochemical applications , 2012 .

[106]  Junwei Lang,et al.  A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials , 2014 .

[107]  Hua Zhang,et al.  Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. , 2014, Angewandte Chemie.

[108]  C. Li,et al.  Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries , 2015 .

[109]  Peixun Xiong,et al.  Metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode , 2014 .

[110]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[111]  X. Jiao,et al.  LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. , 2013, Nanoscale.

[112]  C. Zhi,et al.  Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance , 2014 .

[113]  Qiang Xu,et al.  Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. , 2016, Nature chemistry.

[114]  Jaephil Cho,et al.  Spindle-like mesoporous α-Fe₂O₃ anode material prepared from MOF template for high-rate lithium batteries. , 2012, Nano letters.

[115]  B. Chowdari,et al.  Redox-active metal-centered oxalato phosphate open framework cathode materials for lithium ion batteries. , 2012, Angewandte Chemie.

[116]  Tomoki Akita,et al.  From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. , 2011, Journal of the American Chemical Society.

[117]  Qiang Sun,et al.  High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery. , 2013, ACS applied materials & interfaces.

[118]  Qiang Xu,et al.  Facile Synthesis of Ultrasmall CoS2 Nanoparticles within Thin N-Doped Porous Carbon Shell for High Performance Lithium-Ion Batteries. , 2015, Small.

[119]  Y. Sakka,et al.  Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. , 2014, Chemistry.

[120]  Qiang Xu,et al.  From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. , 2014, Chemical communications.

[121]  A. Matzger,et al.  MOF@MOF: microporous core-shell architectures. , 2009, Chemical communications.

[122]  Longwei Yin,et al.  Metal-Organic Frameworks Derived Porous Core/Shell Structured ZnO/ZnCo2O4/C Hybrids as Anodes for High-Performance Lithium-Ion Battery. , 2015, ACS applied materials & interfaces.

[123]  Structural, magnetic and redox properties of a new cathode material for Li-ion batteries: the iron-based metal organic framework , 2008 .

[124]  Jaephil Cho,et al.  Graphene/Graphene‐Tube Nanocomposites Templated from Cage‐Containing Metal‐Organic Frameworks for Oxygen Reduction in Li–O2 Batteries , 2014, Advanced materials.

[125]  Qiang Xu,et al.  Metal-organic framework composites. , 2014, Chemical Society reviews.

[126]  Xiongwei Wu,et al.  A Quasi‐Solid‐State Sodium‐Ion Capacitor with High Energy Density , 2015, Advanced materials.

[127]  Yongsheng Chen,et al.  A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density , 2013 .

[128]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[129]  Guowang Diao,et al.  Fabrication of core-shell α-Fe(2)O(3)@ Li(4)Ti(5)O(12) composite and its application in the lithium ion batteries. , 2014, ACS applied materials & interfaces.

[130]  J. Botas,et al.  Co8-MOF-5 as electrode for supercapacitors , 2012 .

[131]  Gleb Yushin,et al.  High‐Capacity Anode Materials for Lithium‐Ion Batteries: Choice of Elements and Structures for Active Particles , 2014 .

[132]  Yicheng Guo,et al.  General design of hollow porous CoFe2O4 nanocubes from metal-organic frameworks with extraordinary lithium storage. , 2014, Nanoscale.

[133]  Krista S. Walton,et al.  Water stability and adsorption in metal-organic frameworks. , 2014, Chemical reviews.

[134]  Qianwang Chen,et al.  Metal–organic framework-derived porous Mn1.8Fe1.2O4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries , 2015 .

[135]  Y. Tong,et al.  Iron‐Based Supercapacitor Electrodes: Advances and Challenges , 2016 .

[136]  Limin Wang,et al.  Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes , 2014 .

[137]  Heejoon Ahn,et al.  Unusual energy storage and charge retention in Co-based metal–organic-frameworks , 2012 .

[138]  Zhen Zhou,et al.  Preparation and electrochemical performances of doughnut-like Ni(OH)₂-Co(OH)₂ composites as pseudocapacitor materials. , 2012, Nanoscale.

[139]  Ting Liu,et al.  High performance mesoporous C@Se composite cathodes derived from Ni-based MOFs for Li–Se batteries , 2015 .

[140]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[141]  Synthesis of a flower-like Co-doped Ni(OH) 2 composite for high-performance supercapacitors , 2015 .

[142]  Xiaogang Liu Zinc oxide nano- and microfabrication from coordination-polymer templates. , 2009, Angewandte Chemie.

[143]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[144]  H. Pang,et al.  Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis. , 2012, Dalton transactions.

[145]  Weiwei Sun,et al.  Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted Metal-Organic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage. , 2015, ACS nano.

[146]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[147]  Facile synthesis of three-dimensional porous carbon with high surface area by calcining metal–organic framework for lithium-ion batteries anode materials , 2014 .

[148]  Jian Liu,et al.  Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. , 2015, Journal of the American Chemical Society.

[149]  S. Licht,et al.  A Solid Sulfur Cathode for Aqueous Batteries , 1993, Science.

[150]  L. Kong,et al.  Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors , 2014 .

[151]  Huan Pang,et al.  Zeolitic Imidazolate Framework‐67 Rhombic Dodecahedral Microcrystals with Porous {110} Facets As a New Electrocatalyst for Sensing Glutathione , 2015 .

[152]  P. Wen,et al.  MOF-derived NixCo1−x(OH)2 composite microspheres for high-performance supercapacitors , 2016 .

[153]  B. Chowdari,et al.  A layered oxalatophosphate framework as a cathode material for Li-ion batteries , 2013 .

[154]  L. Tang,et al.  Topochemical transformation of Co(II) coordination polymers to Co3O4 nanoplates for high-performance lithium storage , 2015 .

[155]  Yang Yang,et al.  High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework , 2014, Nature Communications.

[156]  Y. Gogotsi,et al.  Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances , 2013 .

[157]  Yang Shao-Horn,et al.  Lithium–oxygen batteries: bridging mechanistic understanding and battery performance , 2013 .

[158]  Bin Qiu,et al.  Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor. , 2016, ACS applied materials & interfaces.

[159]  Hui Wang,et al.  Easy access to nitrogen-doped mesoporous interlinked carbon/NiO nanosheet for application in lithium-ion batteries and supercapacitors , 2015 .

[160]  S. Kaliaguine,et al.  Non-precious electrocatalysts synthesized from metal–organic frameworks , 2014 .

[161]  Peixun Xiong,et al.  Zn-doped Ni-MOF material with a high supercapacitive performance , 2014 .

[162]  Ryne P. Raffaelle,et al.  Carbon nanotubes for lithium ion batteries , 2009 .

[163]  Jun Yan,et al.  Al and Co co-doped α-Ni(OH)2/graphene hybrid materials with high electrochemical performances for supercapacitors , 2014 .

[164]  Limin Wang,et al.  Metal-organic framework derived Fe2O3@NiCo2O4 porous nanocages as anode materials for Li-ion batteries. , 2014, Nanoscale.

[165]  M. Doublet,et al.  FeII/FeIII mixed-valence state induced by Li-insertion into the metal-organic-framework Mil53(Fe): A DFT+U study , 2011 .

[166]  Qiang Xu,et al.  Metal-Organic Frameworks for Energy Applications , 2017 .

[167]  P. Wen,et al.  Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density , 2015 .

[168]  A. Mahmood,et al.  Metal‐Organic Framework‐Based Nanomaterials for Electrocatalysis , 2016 .

[169]  Jun Zhang,et al.  In situ preparation of cobalt doped ZnO@C/CNT composites by the pyrolysis of a cobalt doped MOF for high performance lithium ion batteries , 2015 .

[170]  Guoxiu Wang,et al.  Facile synthesis of graphitic carbon nitride/nanostructured α-Fe2O3 composites and their excellent electrochemical performance for supercapacitor and enzyme-free glucose detection applications , 2016 .

[171]  Yiju Li,et al.  A novel asymmetric supercapacitor with buds-like Co(OH)2 used as cathode materials and activated carbon as anode materials , 2015 .

[172]  James F. Miller,et al.  Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems , 2006 .

[173]  M. Doublet,et al.  Design of Electrode Materials for Lithium-Ion Batteries: The Example of Metal−Organic Frameworks , 2010 .

[174]  F. Huo,et al.  MOF-directed templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithium-ion battery anodes , 2015 .

[175]  Gang Chen,et al.  Layered nickel metal–organic framework for high performance alkaline battery-supercapacitor hybrid devices , 2016 .

[176]  Jianmin Zhang,et al.  A porous Co(OH)2 material derived from a MOF template and its superior energy storage performance for supercapacitors , 2015 .

[177]  Wei Xia,et al.  Functional zeolitic-imidazolate-framework-templated porous carbon materials for CO2 capture and enhanced capacitors. , 2013, Chemistry, an Asian journal.

[178]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[179]  G. Diao,et al.  Fe3O4-based core/shell nanocomposites for high-performance electrochemical supercapacitors , 2016, Journal of Materials Science.

[180]  Q. Qu,et al.  Graphene oxides-guided growth of ultrafine Co3O4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries , 2015 .

[181]  J. Harrowfield,et al.  Giant core-shell nanospherical clusters composed of 32 Co or 32 Ni atoms held by 6 p-tert-butylthiacalix[4]arene units. , 2012, Inorganic chemistry.

[182]  Krista S. Walton,et al.  Adjusting the stability of metal-organic frameworks under humid conditions by ligand functionalization. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[183]  S. Kitagawa,et al.  Control of pore distribution of porous carbons derived from Mg2+ porous coordination polymers , 2015 .

[184]  Lu Wang,et al.  Flexible Solid-State Supercapacitor Based on a Metal-Organic Framework Interwoven by Electrochemically-Deposited PANI. , 2015, Journal of the American Chemical Society.

[185]  Yan Yu,et al.  MOF-Derived Hollow Co9 S8 Nanoparticles Embedded in Graphitic Carbon Nanocages with Superior Li-Ion Storage. , 2016, Small.

[186]  Guangbin Ji,et al.  High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating. , 2012, Chemical communications.

[187]  J-M Tarascon,et al.  Key challenges in future Li-battery research , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[188]  M. Yoshio,et al.  Cooperation of micro- and meso-porous carbon electrode materials in electric double-layer capacitors , 2010 .

[189]  Limin Wang,et al.  Core-shell NiFe2O4@TiO2 nanorods: an anode material with enhanced electrochemical performance for lithium-ion batteries. , 2014, Chemistry.

[190]  Cai Shen,et al.  An exceptionally stable functionalized metal-organic framework for lithium storage. , 2015, Chemical communications.

[191]  Y. Chabal,et al.  Stability and Hydrolyzation of Metal Organic Frameworks with Paddle-Wheel SBUs upon Hydration , 2012, 1209.2564.

[192]  Yang Wang,et al.  Functionalized metal–organic framework as a new platform for efficient and selective removal of cadmium(ii) from aqueous solution , 2015 .

[193]  Yunhui Huang,et al.  MOF‐Derived Porous ZnO/ZnFe2O4/C Octahedra with Hollow Interiors for High‐Rate Lithium‐Ion Batteries , 2014, Advanced materials.

[194]  Bin Qiu,et al.  Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage , 2013, Scientific Reports.

[195]  B. Tang,et al.  The electrochemical performance of SnO2 quantum dots@zeolitic imidazolate frameworks-8 (ZIF-8) composite material for supercapacitors , 2014 .

[196]  N. Imanishi,et al.  Carbon electrode with perovskite-oxide catalyst for aqueous electrolyte lithium-air secondary batteries , 2013 .

[197]  C. Li,et al.  Cobalt-based metal organic framework with superior lithium anodic performance , 2016 .

[198]  Gengfeng Zheng,et al.  A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage. , 2015, Journal of colloid and interface science.

[199]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[200]  J. Tarascon,et al.  Synthesis, Structure, Characterization, and Redox Properties of the Porous MIL‐68(Fe) Solid , 2010 .

[201]  P. Qi,et al.  Metal-Organic Frameworks (MOFs) as Sandwich Coating Cushion for Silicon Anode in Lithium Ion Batteries. , 2015, ACS applied materials & interfaces.