H i-to-H2 Transitions in Dust-free Interstellar Gas

We present numerical computations and analysis of atomic-to-molecular (H i-to-H2) transitions in cool (∼100 K), low-metallicity, dust-free (primordial) gas in which molecule formation occurs via cosmic-ray-driven negative ion chemistry and removal is by a combination of far-UV photodissociation and cosmic-ray ionization and dissociation. For any gas temperature, the behavior depends on the ratio of the Lyman–Werner (LW) band FUV intensity to gas density, I LW/n, and the ratio of the cosmic-ray ionization rate to the gas density, ζ/n. We present sets of H i-to-H2 abundance profiles for a wide range of ζ/n and I LW/n for dust-free gas. We determine the conditions for which H2 absorption-line self-shielding in optically thick clouds enables a transition from atomic to molecular form for ionization-driven chemistry. We also examine the effects of cosmic-ray energy losses on the atomic and molecular density profiles and transition points. For a unit Galactic interstellar FUV field intensity (I LW = 1) with LW flux 2.07 × 107 photons cm−2 s−1 and a uniform cosmic-ray ionization rate ζ = 10−16 s−1, an H i-to-H2 transition occurs at a total hydrogen gas column density of 4 × 1021 cm−2, within 3 × 107 yr, for a gas volume density of n = 106 cm−3 at 100 K. For these parameters, the dust-free limit is reached for a dust-to-gas ratio Zd′≲10−5 , which may be reached for overall metallicities Z′≲0.01 relative to Galactic solar values.

[1]  E. Bergin,et al.  Astrochemistry and compositions of planetary systems , 2020, 2010.03529.

[2]  S. Bialy The Far-UV Interstellar Radiation Field in Galactic Disks: Numerical and Analytic Models , 2020, The Astrophysical Journal.

[3]  R. Klessen,et al.  Physical Processes in Star Formation , 2020, Space Science Reviews.

[4]  A. Sternberg,et al.  The Evolution of the Star-Forming Interstellar Medium Across Cosmic Time , 2020, 2003.06245.

[5]  E. V. Dishoeck,et al.  Molecule formation in dust-poor irradiated jets , 2020, Astronomy & Astrophysics.

[6]  J. Kruijssen,et al.  Impact of Low-Energy Cosmic Rays on Star Formation , 2020, 2002.10282.

[7]  K. Menten,et al.  Detection of Vibrational Emissions from the Helium Hydride Ion (HeH+) in the Planetary Nebula NGC 7027 , 2020, The Astrophysical Journal.

[8]  Z. Haiman,et al.  Suppression of H2-cooling in protogalaxies aided by trapped Lyα cooling radiation , 2020, 2001.05498.

[9]  D. A. Orlov,et al.  Quantum-state–selective electron recombination studies suggest enhanced abundance of primordial HeH+ , 2019, Science.

[10]  D. Narayanan,et al.  The dust-to-gas and dust-to-metal ratio in galaxies from z = 0 to 6 , 2019, Monthly Notices of the Royal Astronomical Society.

[11]  K. Menten,et al.  Astrophysical detection of the helium hydride ion HeH+ , 2019, Nature.

[12]  A. Sternberg,et al.  Thermal Phases of the Neutral Atomic Interstellar Medium from Solar Metallicity to Primordial Gas , 2019, The Astrophysical Journal.

[13]  P. Noterdaeme,et al.  Molecular gas and star formation in an absorption-selected galaxy: Hitting the bull’s eye at z ≃ 2.46 , 2018, Astronomy & Astrophysics.

[14]  P. Caselli,et al.  Penetration of Cosmic Rays into Dense Molecular Clouds: Role of Diffuse Envelopes , 2018, 1802.02612.

[15]  G. Nyman,et al.  H$_2$ formation on interstellar dust grains: the viewpoints of theory, experiments, models and observations , 2017, 1711.10568.

[16]  David A. Neufeld,et al.  The Cosmic-Ray Ionization Rate in the Galactic Disk, as Determined from Observations of Molecular Ions , 2017, 1704.03877.

[17]  E. Dishoeck,et al.  Cosmic-ray Induced Destruction of CO in Star-forming Galaxies , 2017, 1703.08598.

[18]  Z. Haiman,et al.  Beyond J crit : a critical curve for suppression of H 2 -cooling in protogalaxies , 2016, 1609.02142.

[19]  W. Webber,et al.  GALACTIC COSMIC RAYS IN THE LOCAL INTERSTELLAR MEDIUM: VOYAGER 1 OBSERVATIONS AND MODEL RESULTS , 2016, The Astrophysical journal.

[20]  A. Sternberg,et al.  ANALYTIC H i-to-H2 PHOTODISSOCIATION TRANSITION PROFILES , 2016, 1601.02608.

[21]  Andrei Mesinger,et al.  Understanding the Epoch of Cosmic Reionization , 2016 .

[22]  D. De Fazio,et al.  Complementarity between Quantum and Classical Mechanics in Chemical Modeling. The H + HeH+ → H2 + + He Reaction: A Rigourous Test for Reaction Dynamics Methods. , 2015, The journal of physical chemistry. A.

[23]  Z. Haiman Cosmic Reionization and the First Nonlinear Structures in the Universe , 2015, 1511.01125.

[24]  A. Sternberg,et al.  CO/H2, C/CO, OH/CO, and OH/O2 in Dense Interstellar Gas: From High Ionization to Low Metallicity , 2014, 1409.6724.

[25]  M. Spaans,et al.  How realistic UV spectra and X-rays suppress the abundance of direct collapse black holes , 2014, 1408.3061.

[26]  E. Dishoeck Astrochemistry of dust, ice and gas: introduction and overview , 2014, 1411.5280.

[27]  F. Le Petit,et al.  H i-TO-H2 TRANSITIONS AND H i COLUMN DENSITIES IN GALAXY STAR-FORMING REGIONS , 2014, 1404.5042.

[28]  Z. Haiman,et al.  High-redshift star formation in a time-dependent Lyman–Werner background , 2014, 1402.0882.

[29]  G. J. Bendo,et al.  Gas-to-dust mass ratios in local galaxies over a 2 dex metallicity range , 2013, 1312.3442.

[30]  A. Sternberg,et al.  The ratio of CO to total gas mass in high-redshift galaxies , 2013, 1302.6998.

[31]  J. Loreau,et al.  Determination of photodissociation and radiative association cross sections from the same time-dependent calculation , 2013, 1301.5547.

[32]  F. Palla,et al.  The Dawn of Chemistry , 2012, 1211.3319.

[33]  G. Nyman,et al.  Ion chemistry in space , 2012, Reports on progress in physics. Physical Society.

[34]  J. L. Bourlot,et al.  Surface chemistry in the interstellar medium - I. H2 formation by Langmuir-Hinshelwood and Eley-Rideal mechanisms , 2012, 1202.0374.

[35]  G. Bryan,et al.  MAGNETIC FIELDS IN POPULATION III STAR FORMATION , 2011, 1112.4479.

[36]  Piero Madau,et al.  RADIATIVE TRANSFER IN A CLUMPY UNIVERSE. IV. NEW SYNTHESIS MODELS OF THE COSMIC UV/X-RAY BACKGROUND , 2011, 1105.2039.

[37]  Jemma Wolcott-Green Zolt'an Haiman Greg L. Bryan Photodissociation of H2 in protogalaxies: modelling self‐shielding in three‐dimensional simulations , 2011, 1106.3523.

[38]  D. Savin,et al.  Absolute energy-resolved measurements of the H/sup -/+H rarr H/sub 2/+e/sup -/ associative detachment reaction using a merged-beam apparatus , 2010 .

[39]  S. Ioppolo,et al.  Water formation at low temperatures by surface O2 hydrogenation II: The reaction network. , 2010, Physical chemistry chemical physics : PCCP.

[40]  R. C. Forrey,et al.  RESONANT H− PHOTODETACHMENT: ENHANCED PHOTODESTRUCTION AND CONSEQUENCES FOR RADIATIVE FEEDBACK , 2010 .

[41]  C. McKee,et al.  THE ATOMIC-TO-MOLECULAR TRANSITION IN GALAXIES. III. A NEW METHOD FOR DETERMINING THE MOLECULAR CONTENT OF PRIMORDIAL AND DUSTY CLOUDS , 2009, 0908.0330.

[42]  Firenze,et al.  Cosmic-ray ionization of molecular clouds , 2009, 0904.4149.

[43]  E. Herbst,et al.  Modeling Carbon Chain Anions in L1527 , 2008, 0808.1249.

[44]  H. Liszt,et al.  Time-dependent H2 formation and protonation in diffuse clouds , 2009, 0901.1141.

[45]  T. Millar,et al.  The UMIST database for astrochemistry 2012 , 2012, 1212.6362.

[46]  Di Li,et al.  The Transition from Atomic to Molecular Hydrogen in Interstellar Clouds: 21 cm Signature of the Evolution of Cold Atomic Hydrogen in Dense Clouds , 2006, astro-ph/0610368.

[47]  B. Ercolano,et al.  Theoretical calculations of the H i, He i and He ii free-bound continuous emission spectra , 2006, astro-ph/0609174.

[48]  A. Dalgarno The galactic cosmic ray ionization rate , 2006, Proceedings of the National Academy of Sciences.

[49]  V. Ossenkopf,et al.  [CII] 158$\mu$m Emission and Metallicity in PDRs , 2006, astro-ph/0601682.

[50]  R. Saykally,et al.  Dissociative recombination of rotationally cold H3 , 2004 .

[51]  J. Najita,et al.  Heating Protoplanetary Disk Atmospheres , 2004 .

[52]  A. Tielens,et al.  Neutral Atomic Phases of the Interstellar Medium in the Galaxy , 2003 .

[53]  S. Glover Comparing Gas-Phase and Grain-catalyzed H2 Formation , 2002, astro-ph/0210493.

[54]  D. Hollenbach,et al.  Time Dependence of the Ultraviolet Radiation Field in the Local Interstellar Medium , 2002, astro-ph/0202196.

[55]  Di Li,et al.  H I Narrow Self-Absorption in Dark Clouds: Correlations with Molecular Gas and Implications for Cloud Evolution and Star Formation , 2002, astro-ph/0206396.

[56]  P. Stancil,et al.  Atomic and molecular processes in the early Universe , 2002 .

[57]  J. Weingartner,et al.  Photoelectric Emission from Interstellar Dust: Grain Charging and Gas Heating , 1999, astro-ph/9907251.

[58]  P. Stancil,et al.  The Deuterium Chemistry of the Early Universe , 1998 .

[59]  P. Stancil,et al.  Chemical Processes in Astrophysical Radiation Fields , 1997 .

[60]  M. Rees,et al.  Destruction of Molecular Hydrogen during Cosmological Reionization , 1996, astro-ph/9608130.

[61]  Max Tegmark,et al.  How Small Were the First Cosmological Objects? , 1996, astro-ph/9603007.

[62]  D. H. Schwarz,et al.  Master Equation Studies of the Collisional Excitation and Dissociation of H 2 Molecules by H Atoms , 1996 .

[63]  F. Bertoldi,et al.  Structure of Stationary Photodissociation Fronts , 1996, astro-ph/9603032.

[64]  M. Jurek,et al.  Ab initio determination of the rate coefficient for radiative association of , 1995 .

[65]  È. Roueff,et al.  Erratum: Dissociative Recombination of H + 2 Molecular Ions in Hydrogen Plasmas between 20 K and 4000 K , 1994 .

[66]  A. Sternberg Ultraviolet fluorescent molecular hydrogen emission , 1989 .

[67]  J. Black,et al.  Large molecules in diffuse interstellar clouds , 1988 .

[68]  J. Black,et al.  Fluorescent excitation of interstellar H2 , 1987 .

[69]  A. Tielens,et al.  Photodissociation regions. I - Basic model. II - A model for the Orion photodissociation region , 1985 .

[70]  E. Salpeter,et al.  Primordial star formation - The role of molecular hydrogen , 1983 .

[71]  A. Dalgarno,et al.  The formation and destruction of HeH/+/ in astrophysical plasmas , 1982 .

[72]  D. Bohme,et al.  Determination of proton affinities from the kinetics of proton transfer reactions. VII. The proton affinities of O2, H2, Kr, O, N2, Xe, CO2, CH4, N2O, and CO , 1980 .

[73]  S. Prasad,et al.  A model for gas phase chemistry in interstellar clouds. I - The basic model, library of chemical reactions, and chemistry among C, N, and O compounds , 1980 .

[74]  V. Anicich,et al.  An ion cyclotron resonance study of reactions of ions with hydrogen atomsa) , 1979 .

[75]  S. Federman,et al.  Atomic to molecular hydrogen transition in interstellar clouds , 1979 .

[76]  B. Draine Photoelectric heating of interstellar gas , 1978 .

[77]  T. Cravens,et al.  Ionization, dissociation, and heating efficiencies of cosmic rays in a gas of molecular hydrogen. , 1978 .

[78]  J. Peek,et al.  Molecule formation in tenuous media: Quantum effects in spontaneous radiative association , 1976 .

[79]  E. Herbst,et al.  Rate of the reaction N2H/+/ + CO yields HCO/+/ + N2 and its significance for the interstellar chemistry of N2H/+/ , 1975 .

[80]  M. Jura,et al.  Formation and destruction rates of interstellar H2 , 1974 .

[81]  W. Huntress,et al.  Ion‐molecule reactions and vibrational deactivation of H2+ ions in mixtures of hydrogen and helium , 1974 .

[82]  Eric Herbst,et al.  The formation and depletion of molecules in dense interstellar clouds , 1973 .

[83]  R. McCray,et al.  The Formation of Interstellar Molecules from Negative Ions , 1973 .

[84]  M. Tomasko,et al.  Heating of H i Regions by Energetic Particles , 1968 .

[85]  Robert H. Dicke,et al.  Origin of the Globular Star Clusters , 1968 .

[86]  Edwin E. Salpeter,et al.  THE INTERSTELLAR ABUNDANCE OF THE HYDROGEN MOLECULE. I. BASIC PROCESSES , 1963 .