Secure Network Coding via Filtered Secret Sharing ∗

We study the problem of using a multicast network code to transmit information securely in the presence of a “wire-tap” adversary who can eavesdrop on a bounded number of network edges. We establish a close connection between secure linear network coding and a new variant of the secret sharing problem, which we callfiltered secret sharing . Using this connection, we establish new trade-offs between security, capacity, and bandwidth of secure linear network coding schemes. Our positive results show that by giving up a small amount of capacity, it is possible to dramatically reduce the bandwidth requirements of secure linear network coding. Our negative results show that within the framework we consider, unless capacity is relaxed, the bandwidth requirements can be prohibitively high.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[3]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[4]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[5]  Catherine A. Meadows,et al.  Security of Ramp Schemes , 1985, CRYPTO.

[6]  Gérard D. Cohen,et al.  Good coverings of Hamming spaces with spheres , 1985, Discret. Math..

[7]  David Chaum,et al.  Multiparty unconditionally secure protocols , 1988, STOC '88.

[8]  Douglas R. Stinson,et al.  An explication of secret sharing schemes , 1992, Des. Codes Cryptogr..

[9]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[10]  Ueli Maurer,et al.  General Secure Multi-party Computation from any Linear Secret-Sharing Scheme , 2000, EUROCRYPT.

[11]  R. Yeung,et al.  Secure network coding , 2002, Proceedings IEEE International Symposium on Information Theory,.

[12]  Muriel Médard,et al.  An algebraic approach to network coding , 2003, TNET.

[13]  R. Koetter,et al.  Network coding from a network flow perspective , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[14]  R. Koetter,et al.  The benefits of coding over routing in a randomized setting , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[15]  K. Jain,et al.  Practical Network Coding , 2003 .

[16]  Shuo-Yen Robert Li,et al.  Linear network coding , 2003, IEEE Trans. Inf. Theory.

[17]  Jon Feldman,et al.  On the Capacity of Secure Network Coding , 2004 .

[18]  April Rasala Lehman,et al.  Complexity classification of network information flow problems , 2004, SODA '04.

[19]  Yunnan Wu,et al.  Information Exchange in Wireless Networks with Network Coding and Physical-layer Broadcast , 2004 .

[20]  Tracey Ho,et al.  Byzantine modification detection in multicast networks using randomized network coding , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[21]  Kamal Jain Security based on network topology against the wiretapping attack , 2004, IEEE Wireless Communications.

[22]  R. Koetter,et al.  On Coding for Reliable Communication over Packet Networks , 2005, ISIT.

[23]  Gérard D. Cohen,et al.  Covering Codes , 2005, North-Holland mathematical library.

[24]  Christos Gkantsidis,et al.  Network coding for large scale content distribution , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[25]  Peter Sanders,et al.  Polynomial time algorithms for multicast network code construction , 2005, IEEE Transactions on Information Theory.

[26]  Christina Fragouli,et al.  Information flow decomposition for network coding , 2006, IEEE Transactions on Information Theory.