Application of QSPR to Mixtures

In this paper we report an attempt to apply the QSPR approach for the analysis of data for mixtures. This is an extension of the conventional QSPR approach to the analysis of data for single molecules. The QSPR methodology was applied to a data set of experimental measured density of binary liquid mixtures compiled from the literature. The present study is aimed to develop models to predict the "delta" value of a mixture i.e., deviation of the experimental mixture density (MED) from the ideal, mole-weighted calculated mixture density (MCD). The QSPR was investigated in two perspectives (QMD-I and QMD-II) with respect to the creation of training and test sets. The study resulted in significant ensemble neural network and k-nearest neighbor models having statistical parameters r2, q2(10cv) greater than 0.9, and pred_r2 greater than 0.75. The developed models can be used to predict the delta and hence the density of a new mixture. The QSPR analysis shows the importance of hydrogen bond, polar, shape, and thermodynamic descriptors in determining mixture density, thus aiding in the understanding of molecular interactions important in molecular packing in the mixtures.

[1]  L. Morávková,et al.  Excess molar volumes of (acetophenone + benzene, or toluene, or 1,3-xylene, or 1,3,5-trimethylbenzene) at temperatures (298.15 and 328.15) K , 2005 .

[2]  H. Piekarski,et al.  Heat capacities and volumes of nitromethane–methanol and propylene carbonate–methanol mixtures at 298.15 K , 2005 .

[3]  L. Morávková,et al.  (P, Vm, T) Measurements of (toluene + propiophenone) at temperatures from 298.15 K to 328.15 K and at pressures up to 40 MPa , 2005 .

[4]  Adel S. Al-Jimaz,et al.  Physical properties of {anisole + n-alkanes} at temperatures between (293.15 and 303.15) K , 2005 .

[5]  G. Hefter,et al.  Effects of hydration on the thermodynamic properties of aqueous ethylene glycol ether solutions , 2005 .

[6]  D. Richon,et al.  Volumetric properties of the monoethanolamine–methanol mixture at atmospheric pressure from 283.15 to 353.15 K , 2005 .

[7]  J. Canosa,et al.  Measurement of the Isobaric Vapor−Liquid Equilibria of Dimethyl Carbonate with Acetone, 2-Butanone, and 2-Pentanone at 101.3 kPa and Density and Speed of Sound at 298.15 K , 2005 .

[8]  J. M. Goenaga,et al.  Density, Refractive Index, Speed of Sound, and Vapor−Liquid Equilibria for Binary Mixtures of Methanol + Vinyl Propionate and Vinyl Acetate + Vinyl Propionate. Vapor Pressures of Vinyl Propionate , 2005 .

[9]  A. Villares,et al.  Densities and speeds of sound for binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-1-propanol or 2-methyl-2-propanol) at the temperatures (298.15 and 313.15) K , 2004 .

[10]  Isabel M. S. Lampreia,et al.  Volumetric study of (diethylamine+water) mixtures between (278.15 and 308.15) K , 2004 .

[11]  L. E. Elizalde,et al.  Density, excess volumes and partial volumes of the systems of p-xylene+ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene at 298.15 K , 2004 .

[12]  J. Tojo,et al.  Density, viscosity, and speed of sound of dialkyl carbonates with cyclopentane and methyl cyclohexane at several temperatures , 2004 .

[13]  J. M. Goenaga,et al.  Density, Refractive Index, and Speed of Sound at 298.15 K and Vapor-Liquid Equilibria at 101.3 kPa for Binary Mixtures of Ethyl Acetate + 1-Pentanol and Ethanol + 2-Methyl-1-propanol , 2004 .

[14]  M. Kijevčanin,et al.  Volumetric properties of the ternary system ethanol+2-butanone+benzene by the van der Waals and Twu–Coon–Bluck–Tilton mixing rules: experimental data, correlation and prediction , 2004 .

[15]  N. Banerji,et al.  Permittivity and density of binary systems of {dimethyl or diethyl carbonate} + n-dodecane from T = (288.15 to 328.15) K , 2004 .

[16]  D. Prasad,et al.  Excess molar enthalpies and excess molar volumes of methyl methacrylate + benzene, + toluene, + p-xylene, + cyclohexane and + aliphatic diethers (diethyl, diisopropyl and dibutyl) , 2003 .

[17]  K. Tamura,et al.  Excess enthalpies and excess volumes of (2-methoxyethanol + 1,4-dioxane) and (1,2-dimethoxyethane + benzene) at temperatures between 283.15 K and 313.15 K , 2003 .

[18]  G. Iglesias-Silva,et al.  Experimental Densities and Excess Volumes for Binary Mixtures Containing Propionic Acid, Acetone, and Water from 283.15 K to 323.15 K at Atmospheric Pressure , 2003 .

[19]  A. Francesconi,et al.  Experimental study and modelling using the ERAS-Model of the excess molar volume of acetonitrile–alkanol mixtures at different temperatures and atmospheric pressure , 2003 .

[20]  J. Canosa,et al.  Physical properties of the binary mixtures (diethyl carbonate + hexane, heptane, octane and cyclohexane) from T=293.15 K to T=313.15 K , 2003 .

[21]  J. Wisniak,et al.  Volumetric properties of 1,2-dimethylbenzene+ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene at 298.15 K , 2003 .

[22]  A. Tropsha,et al.  Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates. , 2003, Journal of medicinal chemistry.

[23]  S. Murakami,et al.  Excess molar enthalpies and volumes of binary mixtures of two hydrofluoroethers with hexane, or benzene, or ethanol, or 1-propanol, or 2-butanone at T = 298.15 K , 2003 .

[24]  J. Wisniak,et al.  Densities and excess volumes of benzene with ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene at 298.15 K , 2003 .

[25]  J. Wisniak,et al.  Densities and excess volumes of binary mixtures of 1,4-dioxane with either ethyl acrylate, or butyl acrylate, or methyl methacrylate, or styrene at T=298.15 K , 2003 .

[26]  A. Pal,et al.  Excess molar volumes and viscosities of binary mixtures of diethylene glycol diethyl ether with chloroalkanes at 298.15 K , 2003 .

[27]  Alexander Golbraikh,et al.  QSAR Modeling Using Chirality Descriptors Derived from Molecular Topology , 2003, J. Chem. Inf. Comput. Sci..

[28]  A. Francesconi,et al.  Application of the ERAS-Model to binary mixtures of diethylamine and s-butylamine with acetonitrile in the temperature range (288.15–303.15) K , 2002 .

[29]  J. Resa,et al.  Density, Refractive Index, and Speed of Sound at 298.15 K, and Vapor−Liquid Equilibria at 101.3 kPa for Binary Mixtures of Methanol + Ethyl Butyrate and Vinyl Acetate + Ethyl Butyrate , 2002 .

[30]  J. Wisniak,et al.  Volumetric properties of cyclohexane with ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene at 298.15 K , 2002 .

[31]  J. Resa,et al.  Densities, excess molar volumes, and refractive indices of ethyl acetate and aromatic hydrocarbon binary mixtures , 2002 .

[32]  J. Resa,et al.  (Vapour + liquid) equilibria, densities, excess molar volumes, refractive indices, speed of sound for (methanol + allyl acetate) and (vinyl acetate + allyl acetate) , 2002 .

[33]  L. Tassi,et al.  Densities and excess molar volumes of binary mixtures containing 1,2-dichloroethane + 2-methoxyethanol or 1,2-dimethoxyethane at different temperatures , 2002 .

[34]  Wenjun Fang,et al.  Density and Refractive Index at 298.15 K and Vapor−Liquid Equilibria at 101.3 kPa for Four Binary Systems of Methanol, n-Propanol, n-Butanol, or Isobutanol with N-Methylpiperazine , 2002 .

[35]  O. Hiroyuki Excess volumes of (1-pentanol + cyclohexane or benzene) at temperatures between 283.15 K and 328.15 K , 2002 .

[36]  K. Tamura,et al.  Excess enthalpies and excess volumes of binary mixtures of hydrofluoroether with alcohols , 2002 .

[37]  A. E. Mather,et al.  Densities and volumetric properties of the aqueous solutions of 2-amino-2-methyl-1-propanol, n-butyldiethanolamine and n-propylethanolamine at temperatures from 298.15 to 353.15 K , 2002 .

[38]  L. Hepler,et al.  Volumetric properties of aqueous solutions of mono, and diethylethanolamines at temperatures from 5 to 80 °C II , 2002 .

[39]  L. Hepler,et al.  Volumetric properties of aqueous solutions of monoethanolamine, mono- and dimethylethanolamines at temperatures from 5 to 80 °C I , 2002 .

[40]  J. Resa,et al.  Density, Refractive Index, Speed of Sound, and Vapor−Liquid Equilibria for Binary Mixtures of Methanol + Ethyl Propionate and Vinyl Acetate + Ethyl Propionate , 2002 .

[41]  C. Lafuente,et al.  Thermodynamic study of mixtures containing oxygenated compounds , 2002 .

[42]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[43]  A. E. Mather,et al.  Density and excess molar volumes of aqueous solutions of morpholine and methylmorpholine at temperatures from 298.15 K to 353.15 K , 2001 .

[44]  J. Canosa,et al.  Density, refractive index on mixing, and speed of sound of the ternary mixtures (dimethyl carbonate or diethyl carbonate + methanol + toluene) and the corresponding binaries atT = 298.15 K , 2001 .

[45]  J. Resa,et al.  Vapor−Liquid Equilibrium of Binary Mixtures Containing Methanol + Propyl Acetate, Methanol + Isopropyl Acetate, Vinyl Acetate + Propyl Acetate, and Vinyl Acetate + Isopropyl Acetate at 101.3 kPa , 2001 .

[46]  H. Geyer,et al.  Measurement of densities and excess molar volumes for (1,2-propanediol, or 1,2-butanediol + water) at the temperatures (288.15, 298.15, and 308.15) K and at the pressures (0.1, 20, 40, and 60) MPa , 2001 .

[47]  M. Iglesias,et al.  Excess volumes of binary mixtures of vinyl acetate and aromatic hydrocarbons , 2001 .

[48]  E. Jimenez,et al.  Excess volume, changes of refractive index and surface tension of binary 1,2-ethanediol + 1-propanol or 1-butanol mixtures at several temperatures , 2001 .

[49]  S. R. Patel,et al.  Excess volumes and dielectric properties for (methyl methacrylate + a branched alcohol) atT = 298.15 K andT = 308.15 K , 2000 .

[50]  Robert P. Sheridan,et al.  The Centroid Approximation for Mixtures: Calculating Similarity and Deriving Structure-Activity Relationships , 2000, J. Chem. Inf. Comput. Sci..

[51]  K. Tamura,et al.  Thermodynamic properties of (1,3 -dioxane, or 1,4-dioxane + a non-polar liquid) atT = 298.15 K; speed of sound, excess isentropic and isothermal compressibilities and excess isochoric heat capacity☆ , 2000 .

[52]  S. Murakami,et al.  Thermodynamic properties of aqueous solution of 2-isobutoxyethanol atT = (293.15, 298.15, and 303.15) K, below and above LCST , 2000 .

[53]  M. M. Piñeiro,et al.  Mixing properties of benzene+2-methyl-2-butanol+1-pentanol at 298.15 K. Experimental results and comparison between ERAS model and cubic EOS estimations for excess molar volumes , 2000 .

[54]  J. García,et al.  Analysis of the molecular interactions of organic anhydride+alkane binary mixtures using the Nitta–Chao model , 2000 .

[55]  J. Ortega,et al.  Thermodynamic study on binary mixtures of propyl ethanoate and an alkan-1-ol (C2–C4). Isobaric vapor–liquid equilibria and excess properties , 2000 .

[56]  A. Pal,et al.  Excess molar volumes and viscosities of binary mixtures of tetraethylene glycol dimethyl ether (tetraglyme) with chloroalkanes at 298.15 K , 2000 .

[57]  Wenjun Fang,et al.  Density and Refractive Index at 298.15 K and Vapor−Liquid Equilibria at 101.3 kPa for Binary Mixtures of Water + N-Ethylpiperazine , 2000 .

[58]  Alexander Tropsha,et al.  Novel Variable Selection Quantitative Structure-Property Relationship Approach Based on the k-Nearest-Neighbor Principle , 2000, J. Chem. Inf. Comput. Sci..

[59]  J. B. Montón,et al.  Densities, refractive indices, and derived excess properties of the binary systems tert-butyl alcohol+toluene, +methylcyclohexane, and +isooctane and toluene+methylcyclohexane, and the ternary system tert-butyl alcohol+toluene+methylcyclohexane at 298.15 K , 1999 .

[60]  J. Canosa,et al.  Binary mixture properties of diethyl ether with alcohols and alkanes from 288.15 K to 298.15 K , 1999 .

[61]  J. Grolier,et al.  Excess volumes and excess thermal expansivities for binary mixtures of 2-ethoxyethanol with non-polar solvents at temperatures between 283.15 K and 328.15 K , 1999 .

[62]  M. M. Piñeiro,et al.  Thermodynamic properties of the mixture benzene+cyclohexane+2-methyl-2-butanol at the temperature 298.15 K: excess molar volumes prediction by application of cubic equations of state , 1999 .

[63]  J. Linek,et al.  Isothermal vapour–liquid equilibria and densities for the 5-chloropentan-2-one+n-hexane, +toluene and +ethylbenzene binary mixtures , 1998 .

[64]  A. Francesconi,et al.  New applications of the ERAS-Model: excess volumes of binary liquid mixtures of 1-alkanols with acetonitrile , 1998 .

[65]  Fu-qiang Zhang,et al.  Excess enthalpies and excess volumes of N,N-dimethylethanolamine + 1,4-dioxane, + DMF, + DMA or + DMSO , 1997 .

[66]  S. Tabata,et al.  Thermodynamic properties of the mixture of methoxyethanol and cyclohexane: Measurements at the temperatures 293.15, 298.15 and 303.15 K above and below UCST , 1997 .

[67]  J. Canosa,et al.  Mixing properties of (methanol, ethanol, or 1-propanol) with (n-pentane, n-hexane, n-heptane and n-octane) at 298.15 K , 1997 .

[68]  J. Tojo,et al.  Refractive indices, densities and excess properties on mixing of the systems acetone + methanol + water and acetone + methanol + 1-butanol at 298.15 K , 1996 .

[69]  S. A. Beg,et al.  Densities and excess volumes of cyclohexane + hexane between 298.15 K and 473.15 K , 1995 .

[70]  K. Nishikawa,et al.  Excess thermodynamic properties of mixtures of cyclohexanone and benzene at 298.15 and 308.15 K and the effect of excess expansion factor , 1995 .

[71]  Fu-qiang Zhang,et al.  Volumetric properties of binary mixtures of water with ethanolamine alkyl derivatives , 1995 .

[72]  Ru-Qin Yu,et al.  Cluster Analysis by Simulated Annealing , 1994, Comput. Chem..

[73]  T. A. Andrea,et al.  Applications of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors. , 1991, Journal of medicinal chemistry.

[74]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.