Analysis and computation of a pressure-robust method for the rotation form of the stationary incompressible Navier-Stokes equations by using high-order finite elements

In this work, we develop a high-order pressure-robust method for the rotation form of the stationary incompressible Navier–Stokes equations. The original idea is to change the velocity test functions in the discretization of trilinear and right hand side terms by using an H(div)-conforming velocity reconstruction operator. In order to match the rotation form and error analysis, a novel skew-symmetric discrete trilinear form containing the reconstruction operator is proposed, in which not only the velocity test function is changed. The corresponding well-posed discrete weak formulation stems straight from the classical inf-sup stable mixed conforming high-order finite elements, and it is proven to achieve the pressure-independent velocity errors. Optimal convergence rates of H1, L2-error for the velocity and L2-error for the Bernoulli pressure are completely established. Adequate numerical experiments are presented to demonstrate the theoretical results and the remarkable performance of the proposed method.

[1]  W. Layton,et al.  A defect-correction method for the incompressible Navier-Stokes equations , 2002, Appl. Math. Comput..

[2]  Lin Mu,et al.  A Uniformly Robust H(DIV) Weak Galerkin Finite Element Methods for Brinkman Problems , 2020, SIAM J. Numer. Anal..

[3]  Volker John,et al.  Reference values for drag and lift of a two‐dimensional time‐dependent flow around a cylinder , 2004 .

[4]  M. Olshanskii A low order Galerkin finite element method for the Navier–Stokes equations of steady incompressible flow: a stabilization issue and iterative methods , 2002 .

[5]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[6]  E. Erturk,et al.  Numerical solutions of 2‐D steady incompressible driven cavity flow at high Reynolds numbers , 2004, ArXiv.

[7]  Alexander Linke,et al.  On velocity errors due to irrotational forces in the Navier-Stokes momentum balance , 2016, J. Comput. Phys..

[8]  Lawrence Mitchell,et al.  An Augmented Lagrangian Preconditioner for the 3D Stationary Incompressible Navier-Stokes Equations at High Reynolds Number , 2018, SIAM J. Sci. Comput..

[9]  Y. Nie,et al.  A divergence-free reconstruction of the nonconforming virtual element method for the Stokes problem , 2020 .

[10]  Leo G. Rebholz,et al.  On a reduced sparsity stabilization of grad–div type for incompressible flow problems , 2013 .

[11]  E. Barragy,et al.  STREAM FUNCTION-VORTICITY DRIVEN CAVITY SOLUTION USING p FINITE ELEMENTS , 1997 .

[12]  Leo G. Rebholz,et al.  Numerical analysis and computational comparisons of the NS-alpha and NS-omega regularizations , 2010 .

[13]  Jérôme Droniou,et al.  A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes , 2015, Math. Comput..

[14]  Yinnian He,et al.  A simplified two-level method for the steady Navier–Stokes equations , 2008 .

[15]  Ekkehard Ramm,et al.  A three-level finite element method for the instationary incompressible Navier?Stokes equations , 2004 .

[16]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .

[17]  Leo G. Rebholz,et al.  Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection , 2012 .

[18]  Ying Wang,et al.  A pressure-robust virtual element method for the Stokes problem , 2021 .

[19]  Maxim A. Olshanskii,et al.  On the accuracy of the rotation form in simulations of the Navier-Stokes equations , 2009, J. Comput. Phys..

[20]  Alexander Linke A divergence-free velocity reconstruction for incompressible flows , 2012 .

[21]  Shangyou Zhang,et al.  A stabilizer free, pressure robust, and superconvergence weak Galerkin finite element method for the Stokes Equations on polytopal mesh , 2020, ArXiv.

[22]  Thomas J. R. Hughes,et al.  A comparison of discontinuous and continuous Galerkin methods bases on error estimates, conservation, robustness and efficiency , 2000 .

[23]  Volker John,et al.  Finite Element Methods for Incompressible Flow Problems , 2016 .

[24]  Nicolas R. Gauger,et al.  On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond , 2018, The SMAI journal of computational mathematics.

[25]  Leopoldo P. Franca,et al.  On a two‐level finite element method for the incompressible Navier–Stokes equations , 2000 .

[26]  Daniele Antonio Di Pietro,et al.  A Hybrid High-Order method for the incompressible Navier-Stokes problem robust for large irrotational body forces , 2020, Comput. Math. Appl..

[27]  M. V. Dyke,et al.  An Album of Fluid Motion , 1982 .

[28]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[29]  Maxim A. Olshanskii,et al.  On an Efficient Finite Element Method for Navier-Stokes-ω with Strong Mass Conservation , 2011, Comput. Methods Appl. Math..

[30]  Nikolaos A. Malamataris,et al.  Computer-aided analysis of flow past a surface-mounted obstacle , 1997 .

[31]  K. Rajagopal,et al.  Mechanics and Mathematics of Fluids of the Differential Type , 2016 .

[32]  Volker John,et al.  Time‐dependent flow across a step: the slip with friction boundary condition , 2006 .

[33]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[34]  William Layton,et al.  An efficient and modular grad–div stabilization , 2017, Computer Methods in Applied Mechanics and Engineering.

[35]  Alexander Linke,et al.  On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime , 2014 .

[36]  Bruno Cochelin,et al.  ANM for stationary Navier–Stokes equations and with Petrov–Galerkin formulation , 2001 .

[37]  J. A. Fiordilino,et al.  Numerical Analysis of a BDF2 Modular Grad–Div Stabilization Method for the Navier–Stokes Equations , 2018, J. Sci. Comput..

[38]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[39]  J. Schöberl C++11 Implementation of Finite Elements in NGSolve , 2014 .

[40]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[41]  Yinnian He,et al.  Convergence of three iterative methods based on the finite element discretization for the stationary Navier–Stokes equations☆ , 2009 .

[42]  Thierry Coupez,et al.  Stabilized finite element method for incompressible flows with high Reynolds number , 2010, J. Comput. Phys..

[43]  Gunar Matthies,et al.  Robust arbitrary order mixed finite element methods for the incompressible Stokes equations , 2014 .

[44]  Bernardo Cockburn,et al.  Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..

[45]  Yufeng Nie,et al.  A modified nonconforming virtual element with BDM-like reconstruction for the Navier-Stokes equations , 2021 .

[46]  L. Kovasznay Laminar flow behind a two-dimensional grid , 1948 .

[47]  Lawrence Mitchell,et al.  A Reynolds-robust preconditioner for the Scott-Vogelius discretization of the stationary incompressible Navier-Stokes equations , 2020, The SMAI journal of computational mathematics.

[48]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[49]  Volker John,et al.  On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..

[50]  Lin Mu Pressure Robust Weak Galerkin Finite Element Methods for Stokes Problems , 2020, SIAM J. Sci. Comput..

[51]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[52]  Alexander Linke,et al.  Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier--Stokes equations , 2016 .