Towards the unification of structural and statistical pattern recognition

Highlights? The unification of statistical and structural pattern recognition has been a concern for a long time. ? We review attempts made towards bridging the gap between both approaches. ? The aim is to profit from the benefits of each approach and eliminate the drawbacks. ? In an experimental evaluation we show the novel procedures are more powerful than approaches from the early period. The field of pattern recognition is usually subdivided into the statistical and the structural approach. Structural pattern recognition allows one to use powerful and flexible representation formalisms but offers only a limited repertoire of algorithmic tools needed to solve classification and clustering problems. By contrast, the statistical approach is mathematically well founded and offers many tools, but provides a representation formalism that is limited in its power and flexibility. Hence, both subfields are complementary to each other. During the last three decades several efforts have been made towards bridging the gap between structural and statistical pattern recognition in order to profit from the benefits of each approach and eliminate the drawbacks. The present paper reviews some of these attempts made towards the unification of structural and statistical pattern recognition and analyzes the progress that has been achieved.

[1]  Robert M. Haralick,et al.  A Metric for Comparing Relational Descriptions , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  M. Dhome,et al.  Inexact matching using neural networks , 1994 .

[3]  Xinbo Gao,et al.  HMM-based graph edit distance for image indexing , 2008 .

[4]  Kaspar Riesen,et al.  Graph Classification Based on Vector Space Embedding , 2009, Int. J. Pattern Recognit. Artif. Intell..

[5]  Jiming Peng,et al.  Generalized median graphs and applications , 2009, J. Comb. Optim..

[6]  King-Sun Fu,et al.  A distance measure between attributed relational graphs for pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  David Haussler,et al.  Convolution kernels on discrete structures , 1999 .

[8]  Anil K. Jain Data clustering: 50 years beyond K-means , 2010, Pattern Recognit. Lett..

[9]  Alexander J. Smola,et al.  Kernels and Regularization on Graphs , 2003, COLT.

[10]  Hans-Peter Kriegel,et al.  Shortest-path kernels on graphs , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[11]  Fritz Wysotzki,et al.  Automorphism Partitioning with Neural Networks , 2004, Neural Processing Letters.

[12]  Wan-Jui Lee,et al.  A Labelled Graph Based Multiple Classifier System , 2009, MCS.

[13]  Christine Solnon,et al.  Reactive Tabu Search for Measuring Graph Similarity , 2005, GbRPR.

[14]  Fritz Wysotzki,et al.  Solving inexact graph isomorphism problems using neural networks , 2005, Neurocomputing.

[15]  John D. Lafferty,et al.  Information Diffusion Kernels , 2002, NIPS.

[16]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[17]  Edwin R. Hancock,et al.  Structural Matching by Discrete Relaxation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Kim L. Boyer,et al.  Quantitative Measures of Change Based on Feature Organization: Eigenvalues and Eigenvectors , 1998, Comput. Vis. Image Underst..

[19]  Tariq S. Durrani,et al.  A RKHS Interpolator-Based Graph Matching Algorithm , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Henrik I. Christensen,et al.  Pattern Recognition in Practice IV: Multiple Paradigms, Comparative Studies and Hybrid Systems , 1994 .

[21]  Alessandro Sperduti,et al.  A general framework for adaptive processing of data structures , 1998, IEEE Trans. Neural Networks.

[22]  Kaspar Riesen,et al.  Clustering Experiments with Vector Space Embedded Graphs , 2010 .

[23]  Edwin R. Hancock,et al.  Computing approximate tree edit distance using relaxation labeling , 2003, Pattern Recognit. Lett..

[24]  Kuo-Chin Fan,et al.  Genetic-based search for error-correcting graph isomorphism , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[25]  Robert P. W. Duin,et al.  The Dissimilarity Representation for Pattern Recognition - Foundations and Applications , 2005, Series in Machine Perception and Artificial Intelligence.

[26]  William J. Christmas,et al.  Structural Matching in Computer Vision Using Probabilistic Relaxation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Horst Bunke,et al.  Self-organizing maps for learning the edit costs in graph matching , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[28]  Edwin R. Hancock,et al.  Pattern Vectors from Algebraic Graph Theory , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Ernest Valveny,et al.  Generalized median graph computation by means of graph embedding in vector spaces , 2010, Pattern Recognit..

[30]  H. D. Buf,et al.  Automatic diatom identification , 2002 .

[31]  Shengrui Wang,et al.  Median graph computation for graph clustering , 2006, Soft Comput..

[32]  Edwin R. Hancock,et al.  A Riemannian approach to graph embedding , 2007, Pattern Recognit..

[33]  Kaspar Riesen,et al.  Approximate graph edit distance computation by means of bipartite graph matching , 2009, Image Vis. Comput..

[34]  János Csirik,et al.  Dynamic computation of generalised median strings , 2002, Pattern Analysis & Applications.

[35]  King-Sun Fu,et al.  Error-Correcting Isomorphisms of Attributed Relational Graphs for Pattern Analysis , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[36]  Alessio Micheli,et al.  Neural Network for Graphs: A Contextual Constructive Approach , 2009, IEEE Transactions on Neural Networks.

[37]  Kaspar Riesen,et al.  Reducing the dimensionality of dissimilarity space embedding graph kernels , 2009, Eng. Appl. Artif. Intell..

[38]  Alberto Sanfeliu,et al.  Second-Order Random Graphs For Modeling Sets Of Attributed Graphs And Their Application To Object Learning And Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[39]  Kaspar Riesen,et al.  Classification and Clustering of Vector Space Embedded Graphs. Series in Machine Perception and Artificial Intelligence. , 2010 .

[40]  Horst Bunke,et al.  Transforming Strings to Vector Spaces Using Prototype Selection , 2006, SSPR/SPR.

[41]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[42]  Pierre Baldi,et al.  Graph kernels for chemical informatics , 2005, Neural Networks.

[43]  Horst Bunke,et al.  Validation indices for graph clustering , 2003, Pattern Recognit. Lett..

[44]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[45]  Alberto Del Bimbo,et al.  Efficient Matching and Indexing of Graph Models in Content-Based Retrieval , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Edwin R. Hancock,et al.  Structural Graph Matching Using the EM Algorithm and Singular Value Decomposition , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  King-Sun Fu,et al.  Syntactic Pattern Recognition And Applications , 1968 .

[48]  John D. Lafferty,et al.  Diffusion Kernels on Statistical Manifolds , 2005, J. Mach. Learn. Res..

[49]  Abraham Kandel,et al.  Graph-Theoretic Techniques for Web Content Mining , 2005, Series in Machine Perception and Artificial Intelligence.

[50]  Andrew K. C. Wong,et al.  Entropy and Distance of Random Graphs with Application to Structural Pattern Recognition , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Ponnuthurai N. Suganthan,et al.  Structural pattern recognition using genetic algorithms , 2002, Pattern Recognit..

[52]  John D. Lafferty,et al.  Diffusion Kernels on Graphs and Other Discrete Input Spaces , 2002, ICML.

[53]  Josef Kittler,et al.  Using Graph Search Techniques for Contextual Colour Retrieval , 2002, SSPR/SPR.

[54]  Bernard Haasdonk,et al.  Feature space interpretation of SVMs with indefinite kernels , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Horst Bunke,et al.  Self-organizing map for clustering in the graph domain , 2002, Pattern Recognit. Lett..

[56]  Steven Gold,et al.  A Graduated Assignment Algorithm for Graph Matching , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Eam Khwang Teoh,et al.  Pattern recognition by graph matching using the Potts MFT neural networks , 1995, Pattern Recognit..

[58]  Horst Bunke,et al.  Weighted Mean of a Pair of Graphs , 2001, Computing.

[59]  Yeuvo Jphonen,et al.  Self-Organizing Maps , 1995 .

[60]  Eam Khwang Teoh,et al.  Self-organizing Hopfield network for attributed relational graph matching , 1995, Image Vis. Comput..

[61]  Thomas Gärtner,et al.  Kernels for structured data , 2008, Series in Machine Perception and Artificial Intelligence.

[62]  Hisashi Kashima,et al.  Marginalized Kernels Between Labeled Graphs , 2003, ICML.

[63]  Marcello Pelillo,et al.  Replicator Equations, Maximal Cliques, and Graph Isomorphism , 1998, Neural Computation.

[64]  Benoit Huet,et al.  Shape recognition from large image libraries by inexact graph matching , 1999, Pattern Recognit. Lett..

[65]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[66]  Horst Bunke,et al.  Automatic learning of cost functions for graph edit distance , 2007, Inf. Sci..

[67]  Kristina Schädler,et al.  Comparing Structures Using a Hopfield-Style Neural Network , 1999, Applied Intelligence.

[68]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[69]  Thomas Gärtner,et al.  On Graph Kernels: Hardness Results and Efficient Alternatives , 2003, COLT.

[70]  Marco Gori,et al.  Exact and approximate graph matching using random walks , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Kaspar Riesen,et al.  Non-linear Transformations of Vector Space Embedded Graphs , 2008, PRIS.

[72]  Terry Caelli,et al.  Inexact Graph Matching Using Eigen-Subspace Projection Clustering , 2004, Int. J. Pattern Recognit. Artif. Intell..

[73]  Erkki Oja,et al.  Improved Simulated Annealing, Boltzmann Machine, and Attributed Graph Matching , 1990, EURASIP Workshop.

[74]  Alessandro Sperduti,et al.  Supervised neural networks for the classification of structures , 1997, IEEE Trans. Neural Networks.

[75]  Santanu Chaudhury,et al.  Matching structural shape descriptions using genetic algorithms , 1997, Pattern Recognit..

[76]  J. Kazius,et al.  Derivation and validation of toxicophores for mutagenicity prediction. , 2005, Journal of medicinal chemistry.

[77]  Tatsuya Akutsu,et al.  Graph Kernels for Molecular Structure-Activity Relationship Analysis with Support Vector Machines , 2005, J. Chem. Inf. Model..

[78]  Horst Bunke,et al.  Bridging the Gap between Graph Edit Distance and Kernel Machines , 2007, Series in Machine Perception and Artificial Intelligence.

[79]  Kaspar Riesen,et al.  Fast Suboptimal Algorithms for the Computation of Graph Edit Distance , 2006, SSPR/SPR.

[80]  Thomas Gärtner,et al.  A survey of kernels for structured data , 2003, SKDD.

[81]  Horst Bunke,et al.  Syntactic and structural pattern recognition : theory and applications , 1990 .

[82]  Abraham Kandel,et al.  On the Weighted Mean of a Pair of Strings , 2002, Pattern Analysis & Applications.

[83]  Yuan Yao,et al.  Combining flat and structured representations for fingerprint classification with recursive neural networks and support vector machines , 2003, Pattern Recognit..

[84]  Nello Cristianini,et al.  Learning Semantic Similarity , 2002, NIPS.

[85]  Edwin R. Hancock,et al.  Symbolic graph matching with the EM algorithm , 1998, Pattern Recognit..

[86]  King-Sun Fu,et al.  A Step Towards Unification of Syntactic and Statistical Pattern Recognition , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[87]  Hans-Peter Kriegel,et al.  Protein function prediction via graph kernels , 2005, ISMB.

[88]  Horst Bunke,et al.  Error Correcting Graph Matching: On the Influence of the Underlying Cost Function , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[89]  Edwin R. Hancock,et al.  Spectral embedding of graphs , 2003, Pattern Recognit..

[90]  King-Sun Fu,et al.  A graph distance measure for image analysis , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[91]  Josef Kittler,et al.  Discrete relaxation , 1990, Pattern Recognit..

[92]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[93]  Kaspar Riesen,et al.  IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning , 2008, SSPR/SPR.

[94]  Eam Khwang Teoh,et al.  Pattern recognition by homomorphic graph matching using Hopfield neural networks , 1995, Image Vis. Comput..

[95]  Edwin R. Hancock,et al.  Bayesian Graph Edit Distance , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[96]  Bernhard Schölkopf,et al.  Dynamic Alignment Kernels , 2000 .

[97]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[98]  Edwin R. Hancock,et al.  Inexact graph matching using genetic search , 1997, Pattern Recognit..

[99]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[100]  Alfred O. Hero,et al.  A binary linear programming formulation of the graph edit distance , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[101]  King-Sun Fu,et al.  Subgraph error-correcting isomorphisms for syntactic pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[102]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[103]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[104]  Alexander J. Smola,et al.  Advances in Large Margin Classifiers , 2000 .

[105]  Kim L. Boyer,et al.  Quantitative measures of change based on feature organization: eigenvalues and eigenvectors , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[106]  Edward K. Wong,et al.  THREE-DIMENSIONAL OBJECT RECOGNITION BY ATTRIBUTED GRAPHS , 1990 .

[107]  David G. Stork,et al.  Pattern Classification , 1973 .

[108]  Kaspar Riesen,et al.  Dissimilarity Based Vector Space Embedding of Graphs Using Prototype Reduction Schemes , 2009, MLDM.

[109]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[110]  Celso C. Ribeiro,et al.  A Randomized Heuristic for Scene Recognition by Graph Matching , 2004, WEA.

[111]  Horst Bunke,et al.  Inexact graph matching for structural pattern recognition , 1983, Pattern Recognit. Lett..

[112]  Josef Kittler,et al.  Combining Evidence in Probabilistic Relaxation , 1989, Int. J. Pattern Recognit. Artif. Intell..

[113]  Horst Bunke,et al.  On Median Graphs: Properties, Algorithms, and Applications , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[114]  Kaspar Riesen,et al.  Speeding Up Graph Edit Distance Computation with a Bipartite Heuristic , 2007, MLG.

[115]  Edwin R. Hancock,et al.  String Edit Distance, Random Walks And Graph Matching , 2004, Int. J. Pattern Recognit. Artif. Intell..

[116]  Kaspar Riesen,et al.  Graph Classification and Clustering Based on Vector Space Embedding , 2010, Series in Machine Perception and Artificial Intelligence.

[117]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.