srlearn: A Python Library for Gradient-Boosted Statistical Relational Models

We present srlearn, a Python library for boosted statistical relational models. We adapt the scikit-learn interface to this setting and provide examples for how this can be used to express learning and inference problems.

[2]  Sriraam Natarajan,et al.  Human-Guided Learning for Probabilistic Logic Models , 2018, Front. Robot. AI.

[3]  Noah D. Goodman,et al.  Pyro: Deep Universal Probabilistic Programming , 2018, J. Mach. Learn. Res..

[4]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[5]  Nathalie Vauquier,et al.  metric-learn: Metric Learning Algorithms in Python , 2019, J. Mach. Learn. Res..

[6]  Sriraam Natarajan,et al.  Inductive Logic Programming meets Relational Databases : An Application to Statistical Relational Learning , 2016 .

[8]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[9]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[10]  Stephen H. Bach,et al.  Hinge-Loss Markov Random Fields and Probabilistic Soft Logic , 2015, J. Mach. Learn. Res..

[11]  Parisa Kordjamshidi,et al.  Systems AI: A Declarative Learning Based Programming Perspective , 2018, IJCAI.

[12]  Fernando Nogueira,et al.  Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning , 2016, J. Mach. Learn. Res..

[13]  Gilles Louppe,et al.  Independent consultant , 2013 .

[14]  Sriraam Natarajan,et al.  Inductive Logic Programming Meets Relational Databases: Efficient Learning of Markov Logic Networks , 2016, ILP.

[15]  Andrew McCallum,et al.  An Introduction to Conditional Random Fields for Relational Learning , 2007 .

[16]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[17]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[18]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..