Survey weighted estimating equation inference with nuisance functionals

This paper provides a rigorous treatment on design-based estimating equation inference using complex survey data in the presence of nuisance functionals. The proposed design-based framework covers parameters from inequality measures and measures on performance evaluation in economic, business and financial studies but the scope of the paper is more broad. Unlike nuisance parameters in other settings where profile analysis is commonly used, the nuisance functionals are typically handled by using a “plug-in” estimator. We establish root-n consistency and asymptotic normality for parameters defined through survey weighted smooth or non-differentiable estimating functions even if the “plug-in” estimator for the nuisance functional has a convergence rate slower than root-n. A multiplier bootstrap procedure is proposed for three types of commonly used survey designs to tackle the challenge task of variance estimation. Results from a simulation study and an application to a real survey data set demonstrate the effectiveness of the proposed design-based inference on the Lorenz curve.

[1]  D. Pfeffermann The Role of Sampling Weights when Modeling Survey Data , 1993 .

[2]  Debopam Bhattacharya,et al.  Asymptotic inference from multi-stage samples , 2005 .

[3]  Arne Sandström,et al.  Measuring Income Inequality , 1983 .

[4]  Changbao Wu,et al.  ESTIMATION OF DISTRIBUTION FUNCTION AND QUANTILES USING THE MODEL-CALIBRATED PSEUDO EMPIRICAL LIKELIHOOD METHOD , 2002 .

[5]  R. Bliss Testing Term Structure Estimation Methods , 1996 .

[6]  D. Pollard,et al.  Simulation and the Asymptotics of Optimization Estimators , 1989 .

[7]  W. Fuller,et al.  Quantile Estimation with a Complex Survey Design , 1991 .

[8]  A. Ruiz-Gazen,et al.  Efficient estimation of non‐linear finite population parameters by using non‐parametrics , 2014 .

[9]  B. Zheng Testing lorenz curves with non-simple random samples , 2002 .

[10]  Yves Tillé,et al.  A Direct Bootstrap Method for Complex Sampling Designs From a Finite Population , 2011 .

[11]  R. Davidson,et al.  Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality , 1998 .

[12]  A. Owen Empirical Likelihood Ratio Confidence Regions , 1990 .

[13]  David Haziza,et al.  Evaluation of some approximate variance estimators under the Rao-Sampford unequal probability sampling design , 2008 .

[14]  H. A. David Gini's Mean Difference Rediscovered , 1968 .

[15]  Jianqiang C. Wang,et al.  On asymptotic normality and variance estimation for nondifferentiable survey estimators , 2011 .

[16]  J. Kalbfleisch,et al.  The estimating function bootstrap , 2000 .

[17]  Xiaohong Chen,et al.  Semiparametric efficiency in GMM models with auxiliary data , 2007, 0705.0069.

[18]  Xiaohong Chen,et al.  Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models , 2014, 1411.1144.

[19]  Xiaohong Chen,et al.  Estimation of Semiparametric Models When the Criterion Function is Not Smooth , 2002 .

[20]  Russell Davidson,et al.  Distribution-Free Statistical Inference with Lorenz Curves and Income Shares , 1983 .

[21]  T. Lai,et al.  Stochastic integrals of empirical-type processes with applications to censored regression , 1988 .

[22]  Yves G. Berger,et al.  Empirical likelihood confidence intervals for complex sampling designs , 2016 .

[23]  A. Atkinson On the measurement of inequality , 1970 .

[24]  V. P. Godambe,et al.  Parameters of superpopulation and survey population: their relationships and estimation , 1986 .

[25]  Debopam Bhattacharya,et al.  Inference on inequality from household survey data , 2007 .

[26]  Yongsong Qin,et al.  Empirical likelihood confidence intervals for the Gini measure of income inequality , 2010 .

[27]  K. Alexander,et al.  Probability Inequalities for Empirical Processes and a Law of the Iterated Logarithm , 1984 .

[28]  J. Rao,et al.  Estimating Function Jackknife Variance Estimators Under Stratified Multistage Sampling , 2004 .

[29]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[30]  T. Raghunathan,et al.  Multiple Imputation of Missing Income Data in the National Health Interview Survey , 2006 .

[31]  A. Kennickell Constant focus: Engaging to measure wealth , 2017 .

[32]  F. Breidt,et al.  Local polynomial regresssion estimators in survey sampling , 2000 .

[33]  Zhipeng Liao,et al.  Sieve Semiparametric Two-Step GMM Under Weak Dependence , 2015 .

[34]  A. Scott,et al.  The Analysis of Categorical Data from Complex Sample Surveys: Chi-Squared Tests for Goodness of Fit and Independence in Two-Way Tables , 1981 .

[35]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[36]  Matias D. Cattaneo,et al.  Efficient semiparametric estimation of multi-valued treatment effects under ignorability , 2010 .

[37]  Dahai Fu,et al.  Measuring income inequality using survey data: the case of China , 2015 .

[38]  Matias D. Cattaneo,et al.  Two-Step Estimation and Inference with Possibly Many Included Covariates , 2018, The Review of Economic Studies.

[39]  Jae Kwang Kim,et al.  Population empirical likelihood for nonparametric inference in survey sampling , 2014 .

[40]  S. Jenkins,et al.  Estimating trends in US income inequality using the Current Population Survey: the importance of controlling for censoring , 2008, SSRN Electronic Journal.

[41]  D. Pollard Convergence of stochastic processes , 1984 .

[42]  Susana Rubin-Bleuer,et al.  On the two-phase framework for joint model and design-based inference , 2005, math/0603078.

[43]  Whitney K. Newey,et al.  Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators , 2003 .

[44]  Joseph L. Gastwirth,et al.  A General Definition of the Lorenz Curve , 1971 .

[45]  Joel L. Horowitz,et al.  Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators , 1996 .

[46]  H. A. David Miscellanea: Gini's mean difference rediscovered , 1968 .

[47]  D. Binder On the variances of asymptotically normal estimators from complex surveys , 1983 .

[48]  David A. Binder,et al.  Design- and Model-Based Inference for Model Parameters , 2009 .

[49]  Randy R. Sitter,et al.  A PSEUDO EMPIRICAL LIKELIHOOD APPROACH TO THE EFFECTIVE USE OF AUXILIARY INFORMATION IN COMPLEX SURVEYS , 1999 .

[50]  Haiyong Liu The China health and nutrition survey: an important database for poverty and inequality research , 2008 .

[51]  Xiaohong Chen Chapter 76 Large Sample Sieve Estimation of Semi-Nonparametric Models , 2007 .

[52]  Andrew Gelman,et al.  Struggles with survey weighting and regression modeling , 2007, 0710.5005.