Apollonian Circle Packings: Geometry and Group Theory I. The Apollonian Group

AbstractApollonian circle packings arise by repeatedly filling the interstices between four mutually tangent circles with further tangent circles. We observe that there exist Apollonian packings which have strong integrality properties, in which all circles in the packing have integer curvatures and rational centers such that (curvature) $\times$ (center) is an integer vector. This series of papers explain such properties. A Descartes configuration is a set of four mutually tangent circles with disjoint interiors. An Apollonian circle packing can be described in terms of the Descartes configuration it contains. We describe the space of all ordered, oriented Descartes configurations using a coordinate system $M_ D$ consisting of those $4 \times 4$ real matrices $W$ with $W^T Q_{D} \bW = Q_{W}$ where $Q_D$ is the matrix of the Descartes quadratic form $Q_D= x_1^2 + x_2^2+ x_3^2 + x_4^2 - \frac{1}{2}(x_1 +x_2 +x_3 + x_4)^2$ and $Q_W$ of the quadratic form $Q_W = -8x_1x_2 + 2x_3^2 + 2x_4^2$. On the parameter space $M_ D$ the group $\mathop{\it Aut}(Q_D)$ acts on the left, and $\mathop{\it Aut}(Q_W)$ acts on the right, giving two different "geometric" actions. Both these groups are isomorphic to the Lorentz group $O(3, 1)$. The right action of $\mathop{\it Aut}(Q_W)$ (essentially) corresponds to Mobius transformations acting on the underlying Euclidean space $\rr^2$ while the left action of $\mathop{\it Aut}(Q_D)$ is defined only on the parameter space. We observe that the Descartes configurations in each Apollonian packing form an orbit of a single Descartes configuration under a certain finitely generated discrete subgroup of $\mathop{\it Aut}(Q_D)$, which we call the Apollonian group. This group consists of $4 \times 4$ integer matrices, and its integrality properties lead to the integrality properties observed in some Apollonian circle packings. We introduce two more related finitely generated groups in $\mathop{\it Aut}(Q_D)$, the dual Apollonian group produced from the Apollonian group by a "duality" conjugation, and the super-Apollonian group which is the group generated by the Apollonian and dual Apollonian groups together. These groups also consist of integer $4 \times 4$ matrices. We show these groups are hyperbolic Coxeter groups.

[1]  Jeffrey C. Lagarias,et al.  Apollonian Circle Packings: Geometry and Group Theory III. Higher Dimensions , 2000, Discret. Comput. Geom..

[2]  E Kasner,et al.  The Apollonian Packing of Circles. , 1943, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Werner Rühl,et al.  The Lorentz group and harmonic analysis , 1970 .

[4]  Robert Brooks,et al.  The spectral geometry of the Apollonian packing , 1985 .

[5]  Sir Thomas Heath,et al.  A History Of Greek Mathematics Volume II , 1921 .

[6]  W. S. Brown “The Kiss Precise” , 1969, Nature.

[7]  Thomas Little Sir Heath,et al.  From Aristarchus to Diophantus , 1981 .

[8]  John H. Conway,et al.  The sensual (quadratic) form , 1997 .

[9]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[10]  D. Thompson,et al.  A History of Greek Mathematics , 1922, Nature.

[11]  David Wright,et al.  Indra's Pearls: The Vision of Felix Klein , 2002 .

[12]  C. L. Mallows,et al.  Apollonian circle packings:number theory , 2000 .

[13]  Geiges Jes,et al.  J. Differential Geometry , 1997 .

[14]  Z. A. Melzak Infinite Packings of Disks , 1966, Canadian Journal of Mathematics.

[15]  David W. Boyd,et al.  A new class of infinite sphere packings , 1974 .

[16]  David W. Boyd,et al.  The Osculatory Packing of a Three Dimensional Sphere , 1973, Canadian Journal of Mathematics.

[17]  D. Larman,et al.  On the exponent of convergence of a packing of spheres , 1966 .

[18]  H. Coxeter,et al.  Introduction to Geometry. , 1961 .

[19]  K. Falconer The geometry of fractal sets , 1985 .

[20]  Jeffrey C. Lagarias,et al.  Beyond the Descartes Circle Theorem , 2001, Am. Math. Mon..

[21]  Kenneth Stephenson,et al.  Geometric Sequences Of Discs In The Apollonian Packing , 1997 .

[22]  H. S. M. Coxeter,et al.  The Problem of Apollonius , 1968 .

[23]  David W. Boyd,et al.  The sequence of radii of the Apollonian packing , 1982 .

[24]  Patrick Bahls Relative hyperbolicity and right-angled Coxeter groups , 2004 .

[25]  D. Pedoe,et al.  On a Theorem in Geometry , 1967 .

[26]  H. S. M. Coxeter,et al.  Loxodromic sequences of tangent spheres , 1968 .

[27]  Sam Northshield ON APOLLONIAN CIRCLE PACKINGS , 2002 .

[28]  THOROLD GOSSET The Hexlet , 1937, Nature.

[29]  B. Rodin,et al.  The convergence of circle packings to the Riemann mapping , 1987 .

[30]  Claude Tricot,et al.  A new proof for the residual set dimension of the apollonian packing , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[31]  Frederick Soddy,et al.  The Bowl of Integers and the Hexlet , 1937, Nature.

[32]  David W. Boyd,et al.  The disk-packing constant , 1971 .

[33]  Jeffrey C. Lagarias,et al.  Apollonian Circle Packings: Geometry and Group Theory II. Super-Apollonian Group and Integral Packings , 2006, Discret. Comput. Geom..

[34]  John G. Ratcliffe,et al.  Geometry of Discrete Groups , 2019, Foundations of Hyperbolic Manifolds.

[35]  Jeffrey C. Lagarias,et al.  Apollonian Circle Packings : Geometry and Group Theory , 2005 .

[36]  D. Boyd The residual set dimension of the Apollonian packing , 1973 .

[37]  D. Boyd Improved bounds for the disk-packing constant , 1973 .

[38]  Bo Ss Oderberg,et al.  Apollonian Tiling, the Lorentz Group and Regular Trees , 1992 .

[39]  K. Hirst The Apollonian Packing of Circles , 1967 .

[40]  H. S. M. Coxeter Numerical distances among the spheres in a loxodromic sequence , 1997 .

[41]  George Maxwell,et al.  Sphere packings and hyperbolic reflection groups , 1982 .

[42]  J. Cassels,et al.  Rational Quadratic Forms , 1978 .

[43]  P. B. Thomas,et al.  The Hausdorf dimension of the Apollonian packing of circles , 1994 .

[44]  R. Lachlan,et al.  XV. On systems of circles and spheres , 1886, Philosophical Transactions of the Royal Society of London.