Activation of phospholipase A2 by Hsp70 in vitro.

[1]  Long-Sen Chang,et al.  Lipid domain formation modulates activities of snake venom phospholipase A(2) enzymes. , 2010, Toxicon : official journal of the International Society on Toxinology.

[2]  P. Kinnunen,et al.  Activation of phospholipase A2 by 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine in vitro. , 2010, Biochimica et biophysica acta.

[3]  A. Zylicz,et al.  Hsp70 stabilizes lysosomes and reverts Niemann–Pick disease-associated lysosomal pathology , 2010, Nature.

[4]  J. Killian,et al.  Activation of phospholipase A2 by temporin B: formation of antimicrobial peptide-enzyme amyloid-type cofibrils. , 2009, Biochimica et biophysica acta.

[5]  Tzyy‐Schiuan Yang,et al.  Fluorescence single-molecule study of cobra phospholipase A2 action on a supported gel-phase lipid bilayer. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  J. Trojanowski,et al.  Interactions between Hsp70 and the hydrophobic core of alpha-synuclein inhibit fibril assembly. , 2008, Biochemistry.

[7]  T. J. Cunningham,et al.  Product inhibition of secreted phospholipase A2 may explain lysophosphatidylcholines' unexpected therapeutic properties , 2008, Journal of Inflammation.

[8]  P. Kinnunen,et al.  Amyloid-type fiber formation in control of enzyme action: interfacial activation of phospholipase A2. , 2008, Biophysical journal.

[9]  E. Chibowski,et al.  Effect of a lipolytic enzyme on wettability and topography of phospholipid layers deposited on solid support , 2008 .

[10]  M. Jäättelä,et al.  The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions , 2007, FEBS letters.

[11]  Hui Zhou,et al.  Heat shock protein 70 inhibits alpha-synuclein fibril formation via interactions with diverse intermediates. , 2006, Journal of molecular biology.

[12]  R. Sousa,et al.  Keep the Traffic Moving: Mechanism of the Hsp70 Motor , 2006, Traffic.

[13]  P. Kinnunen,et al.  The role of lipid-protein interactions in amyloid-type protein fibril formation. , 2006, Chemistry and physics of lipids.

[14]  C. Dobson,et al.  Heat Shock Protein 70 Inhibits α-Synuclein Fibril Formation via Preferential Binding to Prefibrillar Species* , 2005, Journal of Biological Chemistry.

[15]  P. Kinnunen,et al.  Binding of endostatin to phosphatidylserine-containing membranes and formation of amyloid-like fibers. , 2005, Biochemistry.

[16]  J. Nylandsted,et al.  Heat Shock Protein 70 Promotes Cell Survival by Inhibiting Lysosomal Membrane Permeabilization , 2004, The Journal of experimental medicine.

[17]  P. Kinnunen,et al.  Modulation of the Activity of Secretory Phospholipase A2 by Antimicrobial Peptides , 2003, Antimicrobial Agents and Chemotherapy.

[18]  A. Newton,et al.  The Turn Motif Is a Phosphorylation Switch That Regulates the Binding of Hsp70 to Protein Kinase C* , 2002, The Journal of Biological Chemistry.

[19]  T. Pinheiro,et al.  Binding of prion protein to lipid membranes and implications for prion conversion. , 2002, Journal of molecular biology.

[20]  S. Tatulian Toward understanding interfacial activation of secretory phospholipase A2 (PLA2): membrane surface properties and membrane-induced structural changes in the enzyme contribute synergistically to PLA2 activation. , 2001, Biophysical journal.

[21]  E. Dennis,et al.  The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. , 2000, Biochimica et biophysica acta.

[22]  W. Surewicz,et al.  Membrane Environment Alters the Conformational Structure of the Recombinant Human Prion Protein* , 1999, The Journal of Biological Chemistry.

[23]  Y. Talmon,et al.  Direct imaging by cryo-TEM shows membrane break-up by phospholipase A2 enzymatic activity. , 1998, Biochemistry.

[24]  S. Tatulian,et al.  Structural changes in a secretory phospholipase A2 induced by membrane binding: a clue to interfacial activation? , 1997, Journal of molecular biology.

[25]  W. Burkholder,et al.  Mutations in the C-terminal fragment of DnaK affecting peptide binding. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. Grainger,et al.  Membrane microstructural templates for enzyme domain formation , 1996, Journal of molecular recognition : JMR.

[27]  Craig M. Ogata,et al.  Structural Analysis of Substrate Binding by the Molecular Chaperone DnaK , 1996, Science.

[28]  W. R. Burack,et al.  Modulation of phospholipase A2: identification of an inactive membrane-bound state. , 1995, Biochemistry.

[29]  J. Seelig,et al.  Self-association of beta-amyloid peptide (1-40) in solution and binding to lipid membranes. , 1995, Journal of molecular biology.

[30]  F. Hartl,et al.  Molecular chaperones in cellular protein folding. , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[31]  F. Hartl,et al.  The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[32]  W. R. Burack,et al.  Lipid bilayer heterogeneities and modulation of phospholipase A2 activity. , 1994, Chemistry and physics of lipids.

[33]  W. R. Burack,et al.  Role of lateral phase separation in the modulation of phospholipase A2 activity. , 1993, Biochemistry.

[34]  G. Nelsestuen,et al.  Autophosphorylation of protein kinase C may require a high order of protein-phospholipid aggregates. , 1992, The Journal of biological chemistry.

[35]  W. Kabsch,et al.  Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Gelb,et al.  Crystal structure of bee-venom phospholipase A2 in a complex with a transition-state analogue , 1990, Science.

[37]  K. Flaherty,et al.  Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein , 1990, Nature.

[38]  H. Ringsdorf,et al.  Hydrolytic action of phospholipase A2 in monolayers in the phase transition region: direct observation of enzyme domain formation using fluorescence microscopy. , 1990, Biochimica et biophysica acta.

[39]  P. Kinnunen,et al.  Phospholipase A2 assay using an intramolecularly quenched pyrene-labeled phospholipid analog as a substrate. , 1988, Analytical biochemistry.

[40]  P. Kinnunen,et al.  Hydrolysis of 1-palmitoyl-2-[6-(pyren-1-yl)]hexanoyl-sn-glycero- 3-phospholipids by phospholipase A2: effect of the polar head-group. , 1987, Biochimica et biophysica acta.

[41]  P. Kinnunen,et al.  Fluorometric assay for phospholipase A2 in serum. , 1985, Clinical chemistry.

[42]  M. Egmond,et al.  Unusual kinetic behavior of porcine pancreatic (pro)phospholipase A2 on negatively charged substrates at submicellar concentrations. , 1983, Biochemistry.

[43]  M. Wells The mechanism of interfacial activation of phospholipase A2. , 1974, Biochemistry.

[44]  J. Vidal,et al.  Zymogen-catalyzed hydrolysis of monomeric substrates and the presence of a recognition site for lipid-water interfaces in phospholipase A2. , 1974, Biochemistry.

[45]  R. Verger,et al.  Action of phospholipase A at interfaces. , 1973, The Journal of biological chemistry.

[46]  P. Kinnunen,et al.  Polyamine-phospholipid interaction probed by the accessibility of the phospholipidsn-2 ester bond to the action of phospholipase A2 , 2005, The Journal of Membrane Biology.

[47]  E. Dennis,et al.  Activation, aggregation, inhibition and the mechanism of phospholipase A2. , 1990, Advances in experimental medicine and biology.