A New Method of Force Control for Unknown Environments

We propose a new control technique for force control on unknown environments. In particular, the proposed approach overcomes the need for precise estimation of environment parameters, which are needed in many system identification-based force control approaches. This framework uses an artificial neural network (ANN)-based proportional-integral (PI)-gain scheduling direct force controller to track the desired force by adjusting control gains based on online parameter estimation. However, the ANN is tolerant to imprecise estimation of environment parameters. Experimental results are presented to demonstrate the efficacy of the proposed control framework. Finally, the advantages and limitations of the proposed controller are discussed

[1]  D. Erol,et al.  Autonomously Adapting Robotic Assistance for Rehabilitation Therapy , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[2]  Wayne J. Book,et al.  Environment estimation for enhanced impedance control , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[3]  J. P. Norton,et al.  An Introduction to Identification , 1986 .

[4]  Gwo-Ruey Yu,et al.  Gain scheduling for lateral motion of propulsion controlled aircraft using neural networks , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[5]  Seul Jung,et al.  Neural network techniques for robust force control of robot manipulators , 1995, Proceedings of Tenth International Symposium on Intelligent Control.

[6]  Jing Xiao,et al.  Active compliant motion: a survey , 2005, Adv. Robotics.

[7]  D. R. Broome,et al.  A novel neural adaptive controller for robots , 1994 .

[8]  Seul Jung,et al.  Robust neural force control scheme under uncertainties in robot dynamics and unknown environment , 2000, IEEE Trans. Ind. Electron..

[9]  Q. Wang,et al.  A new simulation scheme for self-tuning adaptive control of robot manipulators , 1991, Robotica.

[10]  R. Ortega,et al.  Adaptive force control of robot manipulators , 1990 .

[11]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[12]  Toshio Fukuda,et al.  Position/force control of robot manipulators for geometrically unknown objects using fuzzy neural networks , 2000, IEEE Trans. Ind. Electron..

[13]  Seul Jung,et al.  Neural network impedance force control of robot manipulator , 1998, IEEE Trans. Ind. Electron..

[14]  Danwei Wang,et al.  Variable structure adaptive motion and force control of robot manipulators , 1994, Autom..

[15]  Carlos Canudas de Wit,et al.  An exponentially stable adaptive control for force and position tracking of robot manipulators , 1999, IEEE Trans. Autom. Control..

[16]  Daniel E. Whitney,et al.  Historical Perspective and State of the Art in Robot Force Control , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[17]  Carlos Canudas de Wit,et al.  Direct adaptive impedance control , 1994 .

[18]  Tsuneo Yoshikawa,et al.  Force control of robot manipulators , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[19]  Carlos Canudas de Wit,et al.  An Exponentially Stable Adaptive Force/Position Control for Robot Manipulators , 1996 .

[20]  Dong xinmin,et al.  Gain scheduled model following control of flight control system based on neural network , 2003, International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003.

[21]  Dan O. Popa,et al.  An analysis of some fundamental problems in adaptive control of force and impedance behavior: theory and experiments , 1995, IEEE Trans. Robotics Autom..

[22]  Miomir Vukobratovic,et al.  A neural network-based classification of environment dynamics models for compliant control of manipulation robots , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[23]  Mahmoud Tarokh,et al.  Force tracking with unknown environment parameters using adaptive fuzzy controllers , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[24]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[25]  Seul Jung,et al.  Experimental studies of neural network impedance force control for robot manipulators , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[26]  Bruno Siciliano,et al.  Force and position tracking: parallel control with stiffness adaptation , 1998 .

[27]  Q. Wang,et al.  Adaptive force control of the PUMA 560 industrial robot manipulator , 1991 .

[28]  Seul Jung,et al.  Force tracking impedance control of robot manipulators under unknown environment , 2004, IEEE Transactions on Control Systems Technology.

[29]  Bruno Siciliano,et al.  Modeling and Control of Robot Manipulators , 1995 .

[30]  S.J. Qin,et al.  Recursive least squares estimation for run-to-run control with metrology delay and its application to STI etch process , 2005, IEEE Transactions on Semiconductor Manufacturing.

[31]  J. Juang Applied system identification , 1994 .

[32]  Emil Levi,et al.  Artificial neural network as a gain scheduler for PI speed controller in DC motor drives , 2000, Proceedings of the 5th Seminar on Neural Network Applications in Electrical Engineering. NEUREL 2000 (IEEE Cat. No.00EX287).

[34]  Inna Sharf,et al.  Contact Stiffness and Damping Estimation for Robotic Systems , 2003, Int. J. Robotics Res..