Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications

Noble metal nanoparticles are capable of confining resonant photons in such a manner as to induce coherent surface plasmon oscillation of their conduction band electrons, a phenomenon leading to two important properties. Firstly, the confinement of the photon to the nanoparticle's dimensions leads to a large increase in its electromagnetic field and consequently great enhancement of all the nanoparticle's radiative properties, such as absorption and scattering. Moreover, by confining the photon's wavelength to the nanoparticle's small dimensions, there exists enhanced imaging resolving powers, which extend well below the diffraction limit, a property of considerable importance in potential device applications. Secondly, the strongly absorbed light by the nanoparticles is followed by a rapid dephasing of the coherent electron motion in tandem with an equally rapid energy transfer to the lattice, a process integral to the technologically relevant photothermal properties of plasmonic nanoparticles. Of all the possible nanoparticle shapes, gold nanorods are especially intriguing as they offer strong plasmonic fields while exhibiting excellent tunability and biocompatibility. We begin this review of gold nanorods by summarizing their radiative and nonradiative properties. Their various synthetic methods are then outlined with an emphasis on the seed-mediated chemical growth. In particular, we describe nanorod spontaneous self-assembly, chemically driven assembly, and polymer-based alignment. The final section details current studies aimed at applications in the biological and biomedical fields.

[1]  Anand Gole,et al.  Immobilization of gold nanorods onto acid-terminated self-assembled monolayers via electrostatic interactions. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[2]  Report of a summit on molecular imaging. , 2005, Radiology.

[3]  R. Dasari,et al.  Ultrasensitive chemical analysis by Raman spectroscopy. , 1999, Chemical reviews.

[4]  Huimeng Wu,et al.  Oriented assembly of Au nanorods using biorecognition system. , 2005, Chemical communications.

[5]  Younan Xia,et al.  Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance. , 2008, Journal of materials chemistry.

[6]  Catherine J. Murphy,et al.  Seed-Mediated Synthesis of Gold Nanorods: Role of the Size and Nature of the Seed , 2004 .

[7]  Rostislav Bukasov,et al.  Highly tunable infrared extinction properties of gold nanocrescents. , 2007, Nano letters.

[8]  C. R. Martin,et al.  Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory , 1992 .

[9]  Younan Xia,et al.  Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process , 2003 .

[10]  Mostafa A. El-Sayed,et al.  Self-Assembly of Gold Nanorods , 2000 .

[11]  C. Murphy,et al.  Polyelectrolyte-Coated Gold Nanorods: Synthesis, Characterization and Immobilization , 2005 .

[12]  Joseph Irudayaraj,et al.  Identity profiling of cell surface markers by multiplex gold nanorod probes. , 2007, Nano letters.

[13]  Wei Ji,et al.  Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods , 2006 .

[14]  Michel Lequime,et al.  Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix , 2008 .

[15]  K. S. Krishnan,et al.  A New Type of Secondary Radiation , 1928, Nature.

[16]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[17]  Yadong Yin,et al.  Colloidal nanocrystal synthesis and the organic–inorganic interface , 2005, Nature.

[18]  Mostafa A. El-Sayed,et al.  Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition , 2002 .

[19]  Scott C. Brown,et al.  Nanoparticles for bioimaging. , 2006, Advances in colloid and interface science.

[20]  W. P. Hall,et al.  A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Assay for Alzheimer's Disease , 2004 .

[21]  M. El-Sayed,et al.  Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant , 1999 .

[22]  Charles R. Martin,et al.  Optical properties of composite membranes containing arrays of nanoscopic gold cylinders , 1992 .

[23]  M. Grzelczak,et al.  Optical properties of platinum-coated gold nanorods , 2007 .

[24]  Arezou A Ghazani,et al.  Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. , 2008, Small.

[25]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[26]  N. Jana,et al.  Preparation of Polystyrene- and Silica-Coated Gold Nanorods and Their Use as Templates for the Synthesis of Hollow Nanotubes , 2001 .

[27]  B. M. I. van der Zande,et al.  Alignment of rod-shaped gold particles by electric fields , 1999 .

[28]  P. Jain,et al.  Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. , 2007, Nanomedicine.

[29]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[30]  Wei Qian,et al.  The effect of plasmon field on the coherent lattice phonon oscillation in electron-beam fabricated gold nanoparticle pairs. , 2007, Nano letters.

[31]  Shuming Nie,et al.  Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals , 1999 .

[32]  N. Jana,et al.  Anisotropic Metal Nanoparticles for Use as Surface‐Enhanced Raman Substrates , 2007 .

[33]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[34]  Philip S Low,et al.  In vitro and in vivo two-photon luminescence imaging of single gold nanorods. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  A. Campion,et al.  Surface-enhanced Raman scattering , 1998 .

[36]  Jess P. Wilcoxon,et al.  Photoluminescence from nanosize gold clusters , 1998 .

[37]  Encai Hao,et al.  Synthesis and Optical Properties of Anisotropic Metal Nanoparticles , 2004, Journal of Fluorescence.

[38]  J. Sader,et al.  Coherent Excitation of Vibrational Modes in Gold Nanorods , 2002 .

[39]  J. Yguerabide,et al.  Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. , 1998, Analytical biochemistry.

[40]  M. Grzelczak,et al.  Influence of silver ions on the growth mode of platinum on gold nanorods , 2006 .

[41]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[42]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[43]  Weibo Cai,et al.  Nanoplatforms for targeted molecular imaging in living subjects. , 2007, Small.

[44]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[45]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[46]  Federico Capasso,et al.  Optical properties of surface plasmon resonances of coupled metallic nanorods. , 2007, Optics express.

[47]  G. Tae,et al.  An enhanced synthesis of gold nanorods by the addition of Pluronic (F-127) via a seed mediated growth process , 2007 .

[48]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[49]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[50]  E. Purcell,et al.  Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .

[51]  N. Jana,et al.  Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. , 2005, Small.

[52]  Prashant K. Jain,et al.  Surface Plasmon Resonance Sensitivity of Metal Nanostructures : Physical Basis and Universal Scaling in Metal Nanoshells , 2007 .

[53]  Tammy Y. Olson,et al.  Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. , 2006, The journal of physical chemistry. B.

[54]  Jianfang Wang,et al.  Nanonecklaces assembled from gold rods, spheres, and bipyramids. , 2007, Chemical communications.

[55]  P. Guyot-Sionnest,et al.  Preparation and optical properties of silver chalcogenide coated gold nanorods , 2006 .

[56]  T. Allen Ligand-targeted therapeutics in anticancer therapy , 2002, Nature Reviews Cancer.

[57]  Yaron Silberberg,et al.  Multiphoton plasmon-resonance microscopy. , 2003, Optics express.

[58]  G. Wurtz,et al.  Towards nonlinear plasmonic devices based on metallic nanorods , 2008, Journal of microscopy.

[59]  P. Lianos,et al.  Gold colloids from cationic surfactant solutions. 1. Mechanisms that control particle morphology , 2002 .

[60]  Hui Zhang,et al.  Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. , 2005, Nano letters.

[61]  Eric Bourillot,et al.  Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles , 1999 .

[62]  Brahim Lounis,et al.  Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers , 2002, Science.

[63]  M. El-Sayed,et al.  Some interesting properties of metals confined in time and nanometer space of different shapes. , 2001, Accounts of chemical research.

[64]  I. Itzkan,et al.  Single Gold Nanorod Detection Using Confocal Light Absorption and Scattering Spectroscopy , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[65]  Stéphane Berciaud,et al.  Observation of intrinsic size effects in the optical response of individual gold nanoparticles. , 2005, Nano letters.

[66]  Yutaka Kuwahara,et al.  Surface-Enhanced Nonresonance Raman Scattering of Rhodamine 6G Molecules Adsorbed on Gold Nanorod Films , 2004 .

[67]  Hong Ding,et al.  Gold Nanorods Coated with Multilayer Polyelectrolyte as Contrast Agents for Multimodal Imaging , 2007 .

[68]  Massoud Motamedi,et al.  High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. , 2007, Nano letters.

[69]  Rebecca Richards-Kortum,et al.  Aptamer-Targeted Gold Nanoparticles As Molecular-Specific Contrast Agents for Reflectance Imaging , 2008, Bioconjugate chemistry.

[70]  Chad A. Mirkin,et al.  Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation , 2006, Science.

[71]  M. El-Sayed,et al.  Hot Electron Relaxation Dynamics of Gold Nanoparticles Embedded in MgSO4 Powder Compared To Solution: The Effect of the Surrounding Medium , 2002 .

[72]  Paul L Carson,et al.  Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent—an ex vivo preliminary rat study , 2008, Nanotechnology.

[73]  T. Pradeep,et al.  One-, two-, and three-dimensional superstructures of gold nanorods induced by dimercaptosuccinic acid. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[74]  K. Lance Kelly,et al.  Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers , 2001 .

[75]  M. El-Sayed,et al.  Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals , 2000 .

[76]  Ivan Gorelikov,et al.  Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. , 2008, Nano letters.

[77]  Marc D Porter,et al.  SERS as a bioassay platform: fundamentals, design, and applications. , 2008, Chemical Society reviews.

[78]  Ming Fang,et al.  Electrostatic layer-by-layer nanoassembly on biological microtemplates: platelets. , 2002, Biomacromolecules.

[79]  S. Neretina,et al.  Vertically aligned wurtzite CdTe nanowires derived from a catalytically driven growth mode , 2007 .

[80]  Bruce T. Draine,et al.  The discrete-dipole approximation and its application to interstellar graphite grains , 1988 .

[81]  Natalia Del Fatti,et al.  Femtosecond response of a single metal nanoparticle. , 2006, Nano letters.

[82]  J. Yguerabide,et al.  Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. , 1998, Analytical biochemistry.

[83]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[84]  F. Davis The origin of pegnology. , 2002, Advanced Drug Delivery Reviews.

[85]  E. Wang,et al.  Well-ordered end-to-end linkage of gold nanorods , 2005, Nanotechnology.

[86]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[87]  M. Yacamán,et al.  Multiple Twinned Gold Nanorods Grown by Bio-reduction Techniques , 2001 .

[88]  Cheng-Dah Chen,et al.  The Shape Transition of Gold Nanorods , 1999 .

[89]  Catherine J. Murphy,et al.  Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods , 2001 .

[90]  M. Harmer,et al.  Surface atomic defect structures and growth of gold nanorods , 2002 .

[91]  M. H. Yeung,et al.  Growth of gold nanorods and bipyramids using CTEAB surfactant. , 2006, The journal of physical chemistry. B.

[92]  J. Creighton,et al.  Ultraviolet–visible absorption spectra of the colloidal metallic elements , 1991 .

[93]  Ji-Xin Cheng,et al.  Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity , 2007, Advanced materials.

[94]  Min Gu,et al.  Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning. , 2007, Optics express.

[95]  Mostafa A. El-Sayed,et al.  Surface-Enhanced Raman Scattering Studies on Aggregated Gold Nanorods† , 2003 .

[96]  A. Govindaraj,et al.  A calorimetric investigation of the assembly of gold nanorods to form necklaces , 2008 .

[97]  Bernhard Lamprecht,et al.  Spectroscopy of single metallic nanoparticles using total internal reflection microscopy , 2000 .

[98]  K. Sokolov,et al.  Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. , 2007, Nano letters.

[99]  Hui Chen,et al.  A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. , 2008, Journal of the American Chemical Society.

[100]  C. R. Martin,et al.  Membrane-Based Synthesis of Nanomaterials , 1996 .

[101]  Hiromi Okamoto,et al.  Imaging of surface plasmon and ultrafast dynamics in gold nanorods by near-field microscopy , 2004 .

[102]  C. Schönenberger,et al.  Aqueous Gold Sols of Rod-Shaped Particles , 1997 .

[103]  Jörg Maser,et al.  Nanoparticles for Applications in Cellular Imaging , 2007, Nanoscale research letters.

[104]  Wei Qian,et al.  Coherent Vibrational Oscillation in Gold Prismatic Monolayer Periodic Nanoparticle Arrays , 2004 .

[105]  J. Luong,et al.  Fluorescence properties of gold nanorods and their application for DNA biosensing. , 2005, Chemical communications.

[106]  F. Koyama,et al.  Polarization control of 0.85μm vertical-cavity surface-emitting lasers integrated with gold nanorod arrays , 2007 .

[107]  F. Caruso,et al.  Tailoring the polyelectrolyte coating of metal nanoparticles. , 2001 .

[108]  Paul Mulvaney,et al.  Electric‐Field‐Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions , 2004 .

[109]  R. Alfano,et al.  Raman, fluorescence, and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media. , 1992, Journal of photochemistry and photobiology. B, Biology.

[110]  R. Dasari,et al.  Surface-enhanced Raman scattering and biophysics , 2001 .

[111]  R. Gillies,et al.  Gold Nanorods Targeted to Delta Opioid Receptor: Plasmon-Resonant Contrast and Photothermal Agents , 2008, Molecular imaging.

[112]  M. El-Sayed,et al.  Plasmon field effects on the nonradiative relaxation of hot electrons in an electronically quantized system: CdTe-Au core-shell nanowires. , 2008, Nano letters.

[113]  E. Kumacheva,et al.  Hybrid microgels photoresponsive in the near-infrared spectral range. , 2004, Journal of the American Chemical Society.

[114]  Rebecca Richards-Kortum,et al.  Optical molecular imaging agents for cancer diagnostics and therapeutics. , 2006, Nanomedicine.

[115]  Kenji Kaneko,et al.  Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[116]  Catherine J Murphy,et al.  Seeded high yield synthesis of short Au nanorods in aqueous solution. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[117]  Xuchuan Jiang,et al.  Gold nanorods : Limitations on their synthesis and optical properties , 2006 .

[118]  P. Jain,et al.  Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. , 2007, Nano letters.

[119]  Zhong Lin Wang,et al.  Surface Reconstruction of the Unstable {110} Surface in Gold Nanorods , 2000 .

[120]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[121]  K. G. Thomas,et al.  Gold Nanorods to Nanochains: Mechanistic Investigations on Their Longitudinal Assembly Using α,ω-Alkanedithiols and Interplasmon Coupling , 2006 .

[122]  Chil Seong Ah,et al.  Preparation of AucoreAgshell Nanorods and Characterization of Their Surface Plasmon Resonances , 2001 .

[123]  Zhanfang Ma,et al.  Monodispersed Gold Nanorod‐Embedded Silica Particles as Novel Raman Labels for Biosensing , 2008 .

[124]  Philippe Guyot-Sionnest,et al.  Synthesis and Optical Characterization of Au/Ag Core/Shell Nanorods , 2004 .

[125]  Feng Gao,et al.  End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization , 2005 .

[126]  Joel I. Gersten,et al.  The effect of surface roughness on surface enhanced Raman scattering , 1980 .

[127]  Colby A. Foss,et al.  The Effect of Mutual Orientation on the Spectra of Metal Nanoparticle Rod−Rod and Rod−Sphere Pairs , 2002 .

[128]  M. El-Sayed,et al.  Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix , 2001 .

[129]  M. Faraday X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light , 1857, Philosophical Transactions of the Royal Society of London.

[130]  Amy L Oldenburg,et al.  Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. , 2006, Optics express.

[131]  Michael B. Cortie,et al.  Shape Change and Color Gamut in Gold Nanorods, Dumbbells, and Dog Bones , 2006 .

[132]  C. Rao,et al.  Assembling covalently linked nanocrystals and nanotubes through click chemistry , 2007 .

[133]  Rebecca Richards-Kortum,et al.  Plasmonic nanosensors for imaging intracellular biomarkers in live cells. , 2007, Nano letters.

[134]  Hongwei Liao,et al.  Monitoring gold nanorod synthesis by localized surface plasmon resonance. , 2006, The journal of physical chemistry. B.

[135]  M. D. Brown,et al.  Gene delivery with synthetic (non viral) carriers. , 2001, International journal of pharmaceutics.

[136]  Prashant K. Jain,et al.  Surface Plasmon Coupling and Its Universal Size Scaling in Metal Nanostructures of Complex Geometry: Elongated Particle Pairs and Nanosphere Trimers , 2008 .

[137]  G. Papavassiliou Optical properties of small inorganic and organic metal particles , 1979 .

[138]  C. Mirkin Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. , 2000, Inorganic chemistry.

[139]  Pablo G. Etchegoin,et al.  Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study , 2007 .

[140]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[141]  Catherine J. Murphy,et al.  Seed‐Mediated Growth Approach for Shape‐Controlled Synthesis of Spheroidal and Rod‐like Gold Nanoparticles Using a Surfactant Template , 2001 .

[142]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[143]  Q. Wei,et al.  Synthesis of Near‐Infrared Responsive Gold Nanorod/PNIPAAm Core/Shell Nanohybrids via Surface Initiated ATRP for Smart Drug Delivery , 2008 .

[144]  Gregory V Hartland,et al.  Coherent excitation of vibrational modes in metallic nanoparticles. , 2006, Annual review of physical chemistry.

[145]  William R. Gemmill,et al.  Iron oxide coated gold nanorods: synthesis, characterization, and magnetic manipulation. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[146]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[147]  Michel Orrit,et al.  Third-harmonic generation from single gold nanoparticles. , 2005, Nano letters.

[148]  Gabriel A. Devenyi,et al.  The role of substrate surface alteration in the fabrication of vertically aligned CdTe nanowires , 2008, Nanotechnology.

[149]  B. Nikoobakht,et al.  種結晶を媒介とした成長法を用いた金ナノロッド(NR)の調製と成長メカニズム , 2003 .

[150]  Mostafa A. El-Sayed,et al.  Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation , 1999 .

[151]  R. Dasari,et al.  Diagnosing breast cancer by using Raman spectroscopy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[152]  C. Murphy,et al.  Biotin-streptavidin-induced aggregation of gold nanorods: tuning rod-rod orientation. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[153]  Matthias Karg,et al.  Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. , 2007, Small.

[154]  Younan Xia,et al.  Gold nanostructures: engineering their plasmonic properties for biomedical applications. , 2006, Chemical Society reviews.

[155]  Expression of Plasmid DNA Released from DNA Conjugates of Gold Nanorods , 2007 .

[156]  Luis M Liz-Marzán,et al.  Aligning Au nanorods by using carbon nanotubes as templates. , 2005, Angewandte Chemie.

[157]  P. Royer,et al.  Optimization of SERS-active substrates for near-field Raman spectroscopy , 2003 .

[158]  M. El-Sayed,et al.  Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. , 2006, The journal of physical chemistry. B.

[159]  B. Kooi,et al.  Aligned Gold Nanorods in Silica Made by Ion Irradiation of Core–Shell Colloidal Particles , 2004 .

[160]  E. Zubarev,et al.  Rings of nanorods. , 2007, Angewandte Chemie.

[161]  Ying-Jie Zhu,et al.  Microwave-polyol preparation of single-crystalline gold nanorods and nanowires , 2003 .

[162]  N. Voelcker,et al.  Fabrication of gold nanorod arrays by templating from porous alumina , 2005, Nanotechnology.

[163]  Qing Chang,et al.  Saturable absorption and reverse saturable absorption in platinum nanoparticles , 2005 .

[164]  C. Murphy,et al.  Quantitation of metal content in the silver-assisted growth of gold nanorods. , 2006, The journal of physical chemistry. B.

[165]  C. R. Martin,et al.  Transparent Metal Microstructures , 1989 .

[166]  Jae Hee Song,et al.  Photochemical synthesis of gold nanorods. , 2002, Journal of the American Chemical Society.

[167]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[168]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[169]  H. Dai,et al.  Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[170]  M. El-Sayed,et al.  Gold nanoparticle plasmonic field effect on the primary step of the other photosynthetic system in nature, bacteriorhodopsin. , 2008, Journal of the American Chemical Society.

[171]  Wei Qian,et al.  The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy , 2007, Lasers in surgery and medicine.

[172]  Adam Wax,et al.  Label-free plasmonic detection of biomolecular binding by a single gold nanorod. , 2008, Analytical chemistry.

[173]  F. Lei,et al.  Intracellular applications of analytical SERS spectroscopy and multispectral imaging. , 2008, Chemical Society reviews.

[174]  Weihai Ni,et al.  Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. , 2008, ACS nano.

[175]  A. Mooradian,et al.  Photoluminescence of Metals , 1969 .

[176]  Mostafa A. El-Sayed,et al.  The Quenching of CdSe Quantum Dots Photoluminescence by Gold Nanoparticles in Solution¶ , 2002, Photochemistry and photobiology.

[177]  Ji-Xin Cheng,et al.  Hyperthermic effects of gold nanorods on tumor cells. , 2007, Nanomedicine.

[178]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[179]  Hongwei Liao and,et al.  Gold Nanorod Bioconjugates , 2005 .

[180]  Hiromi Okamoto,et al.  Near-field optical imaging of plasmon modes in gold nanorods. , 2005, The Journal of chemical physics.

[181]  E. Wang,et al.  Fabrication, characterization, and application in SERS of self-assembled polyelectrolyte-gold nanorod multilayered films. , 2005, The journal of physical chemistry. B.

[182]  A. Blaaderen,et al.  Optical Properties of Aligned Rod-Shaped Gold Particles Dispersed in Poly(vinyl alcohol) Films , 1999 .

[183]  Nicholas A. Kotov,et al.  Bioconjugates of CdTe Nanowires and Au Nanoparticles: Plasmon−Exciton Interactions, Luminescence Enhancement, and Collective Effects , 2004 .

[184]  M. El-Sayed,et al.  Thermal Reshaping of Gold Nanorods in Micelles , 1998 .

[185]  Hiromi Okamoto,et al.  Plasmon mode imaging of single gold nanorods. , 2004, Journal of the American Chemical Society.

[186]  George C. Schatz,et al.  A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles , 2004 .

[187]  Hiromi Okamoto,et al.  Reciprocity in scanning near-field optical microscopy: illumination and collection modes of transmission measurements. , 2006, Optics letters.

[188]  Philippe Guyot-Sionnest,et al.  Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. , 2005, The journal of physical chemistry. B.

[189]  T. Niidome,et al.  Stable incorporation of gold nanorods into N-isopropylacrylamide hydrogels and their rapid shrinkage induced by near-infrared laser irradiation. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[190]  T. Niidome,et al.  In vivo monitoring of intravenously injected gold nanorods using near-infrared light. , 2008, Small.

[191]  L. Liz‐Marzán,et al.  Chemical sharpening of gold nanorods: the rod-to-octahedron transition. , 2007, Angewandte Chemie.

[192]  Bing Zhao,et al.  Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag-like optical properties. , 2002, Chemical communications.

[193]  R. Richards-Kortum,et al.  Raman spectroscopy for the detection of cancers and precancers. , 1996, Journal of biomedical optics.

[194]  P. Jain,et al.  Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. , 2006, The journal of physical chemistry. B.

[195]  H. Misawa,et al.  Inhibition of multipolar plasmon excitation in periodic chains of gold nanoblocks. , 2007, Optics express.

[196]  D. A. Stuart,et al.  Surface Enhanced Raman Spectroscopy: New Materials, Concepts, Characterization Tools, and Applications , 2005 .

[197]  D. Choquet,et al.  Single metallic nanoparticle imaging for protein detection in cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[198]  Shuming Nie,et al.  Using Solution-Phase Nanoparticles, Surface-Confined Nanoparticle Arrays and Single Nanoparticles as Biological Sensing Platforms , 2004, Journal of Fluorescence.

[199]  Hao‐Li Zhang,et al.  Preparation of ordered array of nanoscopic gold rods by template method and its optical properties , 2000 .

[200]  H. Abruña,et al.  Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. , 2001, Chemical reviews.

[201]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[202]  Jae Hee Song,et al.  Synthesis of size and shape-selective Au nanocrystals via proton beam irradiation , 2006 .

[203]  N. R. Jagannathan,et al.  Molecular imaging in biomedical research , 2007 .

[204]  Pai-Chi Li,et al.  Multiple targeting in photoacoustic imaging using bioconjugated gold nanorods , 2006, SPIE BiOS.

[205]  Milton Kerker,et al.  The Scattering of Light and Other Electromagnetic Radiation ~Academic , 1969 .

[206]  Xiaohua Huang,et al.  Peptide-conjugated gold nanorods for nuclear targeting. , 2007, Bioconjugate chemistry.

[207]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[208]  T. S. Ahmadi,et al.  Critical Concentrations and Role of Ascorbic Acid (Vitamin C) in the Crystallization of Gold Nanorods within Hexadecyltrimethyl Ammonium Bromide (CTAB)/Tetraoctyl Ammonium Bromide (TOAB) Micelles , 2006 .

[209]  Dakrong Pissuwan,et al.  Targeted destruction of murine macrophage cells with bioconjugated gold nanorods , 2007 .

[210]  Jun Fang,et al.  Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. , 2003, International immunopharmacology.

[211]  Olaf Schubert,et al.  Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods. , 2008, Nano letters.

[212]  Hironobu Takahashi,et al.  Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light. , 2005, Chemical communications.

[213]  J. Irudayaraj,et al.  Surface modification of cetyltrimethylammonium bromide-capped gold nanorods to make molecular probes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[214]  R. Gans,et al.  Über die Form ultramikroskopischer Silberteilchen , 1915 .

[215]  Hristina Petrova,et al.  Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. , 2006, Physical chemistry chemical physics : PCCP.

[216]  G. Markovich,et al.  Growth of Gold Nanorods on Surfaces , 2003 .

[217]  Catherine J Murphy,et al.  Shape-dependent plasmon-resonant gold nanoparticles. , 2006, Small.

[218]  A. Wokaun,et al.  Anisometric gold colloids. Preparation, characterization, and optical properties , 1989 .

[219]  Charles R. Martin,et al.  Template Synthesized Nanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size and Shape , 1994 .

[220]  M. El-Sayed,et al.  Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses , 2000 .

[221]  N. Yu,et al.  Laser-excited Raman spectroscopy of biomolecules. I. Native lysozyme and its constituent amino acids. , 1970, Journal of molecular biology.

[222]  R. Álvarez-Puebla,et al.  Surface-enhanced Raman scattering on colloidal nanostructures. , 2005, Advances in colloid and interface science.

[223]  M. Pileni,et al.  Optical properties of gold nanorods: DDA simulations supported by experiments. , 2005, The journal of physical chemistry. B.

[224]  P. Jain,et al.  Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems , 2007 .

[225]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[226]  R. Lockey,et al.  Nanoparticle-mediated gene delivery: state of the art , 2004, Expert opinion on biological therapy.

[227]  M. El-Sayed,et al.  On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. , 2009, The journal of physical chemistry. A.

[228]  Wei Qian,et al.  Gold nanoparticles propulsion from surface fueled by absorption of femtosecond laser pulse at their surface plasmon resonance. , 2006, Journal of the American Chemical Society.

[229]  Kadir Aslan,et al.  Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. , 2005, Current opinion in chemical biology.

[230]  Guohua Cao,et al.  Ultrasonically modulated x-ray phase contrast and vibration potential imaging methods , 2006, SPIE BiOS.

[231]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[232]  Pierre-Michel Adam,et al.  Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement , 2006 .

[233]  Mona B. Mohamed,et al.  Femtosecond transient-absorption dynamics of colloidal gold nanorods: Shape independence of the electron-phonon relaxation time , 2000 .

[234]  C. J. Johnson,et al.  Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis , 2002 .

[235]  A. Mieszawska,et al.  Synthesis and manipulation of high aspect ratio gold nanorods grown directly on surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[236]  Comment on: Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectricconstant by Link S. et al. , 2003 .

[237]  George Chumanov,et al.  Application of surface-enhanced Raman spectroscopy to biological systems , 1991 .

[238]  T. Klar,et al.  Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering , 2003 .

[239]  C. Murphy,et al.  Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. , 2005, Small.

[240]  Matthew O'Donnell,et al.  Photoacoustic imaging of early inflammatory response using gold nanorods , 2007 .

[241]  S. Shopova,et al.  Gold nanorods grown from HgTe nanoparticles directly on various surfaces , 2006 .

[242]  Wei Qian,et al.  The optically detected coherent lattice oscillations in silver and gold monolayer periodic nanoprism arrays: the effect of interparticle coupling. , 2005, The journal of physical chemistry. B.

[243]  Kort Travis,et al.  Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo. , 2007, Journal of biomedical optics.

[244]  Stephen Mann,et al.  Liquid crystalline assemblies of ordered gold nanorods , 2002 .

[245]  G. Wurtz,et al.  Anisotropic optical properties of arrays of gold nanorods embedded in alumina , 2006 .

[246]  Catherine J. Murphy,et al.  Fine-tuning the shape of gold nanorods , 2005 .

[247]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.

[248]  Charles R. Martin,et al.  A general template-based method for the preparation of nanomaterials , 1997 .

[249]  H. Okamoto,et al.  Ultrafast photoinduced changes of eigenfunctions of localized plasmon modes in gold nanorods , 2008 .

[250]  C. R. Chris Wang,et al.  Gold Nanorods: Electrochemical Synthesis and Optical Properties , 1997 .

[251]  Daniel A. Zweifel,et al.  Sulfide-Arrested Growth of Gold Nanorods. , 2005, Chemistry of materials : a publication of the American Chemical Society.

[252]  K. Torimitsu,et al.  Anisotropic assembly of gold nanorods assisted by selective ion recognition of surface-anchored crown ether derivatives. , 2007, Chemical communications.

[253]  M. El-Sayed,et al.  How Does a Gold Nanorod Melt , 2000 .

[254]  C. Mirkin,et al.  Multipole plasmon resonances in gold nanorods. , 2006, The journal of physical chemistry. B.

[255]  Encai Hao,et al.  Synthesis and Optical Properties of ``Branched'' Gold Nanocrystals , 2004 .

[256]  A Paul Alivisatos,et al.  Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes , 2006, Proceedings of the National Academy of Sciences.

[257]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[258]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[259]  M. El-Sayed,et al.  Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study. , 2005, The journal of physical chemistry. B.

[260]  Bruce T. Draine,et al.  Beyond Clausius-Mossotti - Wave propagation on a polarizable point lattice and the discrete dipole approximation. [electromagnetic scattering and absorption by interstellar grains] , 1992 .

[261]  M. Zheng,et al.  Solvothermal Preparation of Single-crystalline Gold Nanorods in Novel Nonaqueous Microemulsions , 2005 .

[262]  Zhong Lin Wang,et al.  Crystallographic facets and shapes of gold nanorods of different aspect ratios , 1999 .

[263]  Daniele Fava,et al.  "Supramolecular" assembly of gold nanorods end-terminated with polymer "pom-poms": effect of pom-pom structure on the association modes. , 2008, Journal of the American Chemical Society.

[264]  D. Naumann FT-INFRARED AND FT-RAMAN SPECTROSCOPY IN BIOMEDICAL RESEARCH , 2001 .

[265]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[266]  Z. Su,et al.  pH-tuned synthesis of gold nanostructures from gold nanorods with different aspect ratios , 2005 .

[267]  R. Composto,et al.  Two-dimensional confinement of nanorods in block copolymer domains. , 2007, Nano letters.

[268]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[269]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[270]  H. Ringsdorf Structure and properties of pharmacologically active polymers , 1975 .

[271]  Prashant K. Jain,et al.  Determination of the Minimum Temperature Required for Selective Photothermal Destruction of Cancer Cells with the Use of Immunotargeted Gold Nanoparticles , 2006, Photochemistry and photobiology.

[272]  M. El-Sayed,et al.  Photothermally excited coherent lattice phonon oscillations in plasmonic nanoparticles , 2008 .

[273]  M. Albrecht,et al.  Anomalously intense Raman spectra of pyridine at a silver electrode , 1977 .

[274]  J. Chon,et al.  High-temperature seedless synthesis of gold nanorods. , 2006, The journal of physical chemistry. B.

[275]  E. Kumacheva,et al.  Microgels loaded with gold nanorods: photothermally triggered volume transitions under physiological conditions. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[276]  Dongmok Whang,et al.  Large-Scale Hierarchical Organization of Nanowires for Functional Nanosystems , 2004 .

[277]  Yi-Cheng Chen,et al.  DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. , 2006, Journal of the American Chemical Society.

[278]  N. Melosh,et al.  Ultrahigh-Density Nanowire Lattices and Circuits , 2003, Science.

[279]  T. Niidome,et al.  Gold Nanorod-sensitized Cell Death: Microscopic Observation of Single Living Cells Irradiated by Pulsed Near-infrared Laser Light in the Presence of Gold Nanorods , 2006 .

[280]  Igor Nabiev,et al.  Applications of Raman and surface‐enhanced Raman scattering spectroscopy in medicine , 1994 .

[281]  Pierre-Michel Adam,et al.  Short range plasmon resonators probed by photoemission electron microscopy. , 2008, Nano letters.

[282]  J. Dobson,et al.  Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery , 2006, Gene Therapy.

[283]  P. Mulvaney,et al.  Determination of the elastic constants of gold nanorods produced by seed mediated growth , 2004 .

[284]  Tuan Vo-Dinh,et al.  Surface-enhanced Raman spectroscopy using metallic nanostructures , 1998 .

[285]  A. Mieszawska,et al.  Gold Nanorods Grown Directly on Surfaces from Microscale Patterns of Gold Seeds , 2005 .

[286]  Hao Ming Chen,et al.  Controlling the length and shape of gold nanorods. , 2005, The journal of physical chemistry. B.

[287]  G. Schatz Theoretical Studies of Surface Enhanced Raman Scattering , 1984 .

[288]  Catherine J. Murphy,et al.  An Improved Synthesis of High‐Aspect‐Ratio Gold Nanorods , 2003 .

[289]  N. Jana Nanorod shape separation using surfactant assisted self-assembly. , 2003, Chemical communications.

[290]  Jae Hee Song,et al.  Crystal overgrowth on gold nanorods: tuning the shape, facet, aspect ratio, and composition of the nanorods. , 2005, Chemistry.

[291]  Wei Qian,et al.  Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. , 2007, Nano letters.

[292]  Younan Xia,et al.  Template-Engaged Replacement Reaction: A One-Step Approach to the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors , 2002 .

[293]  Leon Hirsch,et al.  Gold nanoshell bioconjugates for molecular imaging in living cells. , 2005, Optics letters.

[294]  M. Delano,et al.  Emerging implications of nanotechnology on cancer diagnostics and therapeutics , 2006, Cancer.

[295]  Jianfang Wang,et al.  Shape- and size-dependent refractive index sensitivity of gold nanoparticles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[296]  Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior , 2006 .

[297]  F. Caruso,et al.  2. Assembly of Alternating Polyelectrolyte and Protein Multilayer Films for Immunosensing , 1997 .

[298]  Younan Xia,et al.  Shape-Controlled Synthesis and Surface Plasmonic Properties of Metallic Nanostructures , 2005 .

[299]  M. El-Sayed,et al.  Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. , 2005, The journal of physical chemistry. B.

[300]  V. Zharov,et al.  Photothermal imaging of nanoparticles and cells , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[301]  S M Moghimi,et al.  Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. , 2000, Trends in biotechnology.

[302]  Michele Follen,et al.  Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. , 2003, Cancer research.

[303]  D. Shieh,et al.  Photoacoustic Imaging of Multiple Targets Using Gold Nanorods , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[304]  Younan Xia,et al.  Gold Nanocages: Engineering Their Structure for Biomedical Applications , 2005 .

[305]  Stephen Mann,et al.  DNA-driven self-assembly of gold nanorods , 2001 .

[306]  M. Nogami,et al.  Facile assembling of gold nanorods with large aspect ratio and their surface-enhanced Raman scattering properties , 2007 .

[307]  T. Niidome,et al.  Photothermal reshaping of gold nanorods prevents further cell death , 2006 .

[308]  Leon Hirsch,et al.  Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer , 2004, Technology in cancer research & treatment.

[309]  M. El-Sayed,et al.  Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. , 2005, The journal of physical chemistry. B.

[310]  Xunbin Wei,et al.  Selective cell targeting with light-absorbing microparticles and nanoparticles. , 2003, Biophysical journal.

[311]  Luis M. Liz-Marzán,et al.  Nanometals: Formation and color , 2004 .

[312]  M. El-Sayed,et al.  The `lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal , 2000 .

[313]  Daniel L Marks,et al.  Optical probes and techniques for molecular contrast enhancement in coherence imaging. , 2005, Journal of biomedical optics.

[314]  Reji Philip,et al.  Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters , 2000 .

[315]  Carsten Sönnichsen,et al.  Self-assembly of small gold colloids with functionalized gold nanorods. , 2007, Nano letters.

[316]  Paul Mulvaney,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002 .

[317]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[318]  Joseph Irudayaraj,et al.  Quantitative evaluation of sensitivity and selectivity of multiplex nanoSPR biosensor assays. , 2007, Biophysical journal.

[319]  N. Jana Shape effect in nanoparticle self-assembly. , 2004, Angewandte Chemie.

[320]  C. Murphy,et al.  pH-triggered assembly of gold nanorods. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[321]  Prashant V. Kamat,et al.  Uniaxial Plasmon Coupling through Longitudinal Self-Assembly of Gold Nanorods , 2004 .

[322]  Stephan Link,et al.  Optical properties and ultrafast dynamics of metallic nanocrystals. , 2003, Annual review of physical chemistry.

[323]  Mostafa A. El-Sayed,et al.  Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum , 2006 .

[324]  Z. Su,et al.  Biorecognition-Driven Self-Assembly of Gold Nanorods: A Rapid and Sensitive Approach toward Antibody Sensing , 2007 .

[325]  Remy Cromer,et al.  SERS nanoparticles: a new optical detection modality for cancer diagnosis. , 2007, Nanomedicine.

[326]  M. El-Sayed,et al.  Laser photothermal melting and fragmentation of gold nanorods: Energy and laser pulse-width dependence , 1999 .

[327]  Erik C. Dreaden,et al.  Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. , 2008, Cancer letters.

[328]  Takuro Niidome,et al.  PEG-modified gold nanorods with a stealth character for in vivo applications. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[329]  R Richards-Kortum,et al.  Optical Systems for in Vivo Molecular Imaging of Cancer , 2003, Technology in cancer research & treatment.

[330]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[331]  B. Nikoobakht,et al.  Medium Effect on the Electron Cooling Dynamics in Gold Nanorods and Truncated Tetrahedra , 2003 .

[332]  Benito Rodríguez-González,et al.  Optical Control and Patterning of Gold‐Nanorod–Poly(vinyl alcohol) Nanocomposite Films , 2005 .

[333]  Joseph Irudayaraj,et al.  Multiplex biosensor using gold nanorods. , 2007, Analytical chemistry.

[334]  Jürgen Popp,et al.  Raman spectroscopy--a prospective tool in the life sciences. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[335]  T. Pradeep,et al.  Hemoprotein bioconjugates of gold and silver nanoparticles and gold nanorods: structure-function correlations. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[336]  T. S. Ahmadi,et al.  Effects of intensity and energy of CW UV light on the growth of gold nanorods. , 2005, The journal of physical chemistry. B.

[337]  Fusheng Xiong,et al.  Single-molecule detection of DNA via sequence-specific links between F1-ATPase motors and gold nanorod sensors. , 2008, Lab on a chip.

[338]  Osamu Takai,et al.  Fabrication and self-assembly of hydrophobic gold nanorods. , 2007, The journal of physical chemistry. B.

[339]  Federico Capasso,et al.  Plasmonic laser antenna , 2006 .

[340]  G. Wiederrecht,et al.  Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. , 2005, Physical review letters.

[341]  Seong Kyu Kim,et al.  Linker-molecule-free gold nanorod layer-by-layer films for surface-enhanced Raman scattering. , 2007, Analytical chemistry.

[342]  R. Richards-Kortum,et al.  Oligonucleotide-coated metallic nanoparticles as a flexible platform for molecular imaging agents. , 2007, Bioconjugate chemistry.

[343]  S. Franzen,et al.  Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. , 2003, Journal of the American Chemical Society.

[344]  H. Okamoto,et al.  Near-field imaging of optical field and plasmon wavefunctions in metal nanoparticles , 2006 .

[345]  Chengde Mao,et al.  DNA-Templated Fabrication of 1D Parallel and 2D Crossed Metallic Nanowire Arrays , 2003 .

[346]  R. Weissleder A clearer vision for in vivo imaging , 2001, Nature Biotechnology.

[347]  Mostafa A. El-Sayed,et al.  Evidence for Bilayer Assembly of Cationic Surfactants on the Surface of Gold Nanorods , 2001 .

[348]  Luis M. Liz-Marzán,et al.  Silica-Coating and Hydrophobation of CTAB-Stabilized Gold Nanorods , 2006 .

[349]  Jaebeom Lee,et al.  Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. , 2007, Nature materials.

[350]  M. Pileni,et al.  Gold nanorods: Influence of various parameters as seeds, solvent, surfactant on shape control , 2007 .

[351]  Christy L. Haynes,et al.  Surface‐enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection , 2005 .

[352]  M. Sander,et al.  Nanoparticle Arrays on Surfaces Fabricated Using Anodic Alumina Films as Templates , 2003 .

[353]  Uwe H F Bunz,et al.  Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. , 2003, Journal of the American Chemical Society.

[354]  Sheng-Wen Huang,et al.  Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging , 2007 .

[355]  K. Torigoe,et al.  Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template , 1995 .

[356]  Huan‐Tsung Chang,et al.  Synthesis of dumbbell-shaped Au-Ag core-shell nanorods by seed-mediated growth under alkaline conditions. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[357]  I. Choi,et al.  Temperature-induced control of aspect ratio of gold nanorods , 2006 .

[358]  Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation , 2006 .

[359]  Latha A. Gearheart,et al.  Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. , 2006, Physical chemistry chemical physics : PCCP.

[360]  Mostafa A. El-Sayed,et al.  How long does it take to melt a gold nanorod?: A femtosecond pump–probe absorption spectroscopic study , 1999 .

[361]  A Paul Alivisatos,et al.  Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. , 2005, Nano letters.

[362]  H. Maeda The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. , 2001, Advances in enzyme regulation.

[363]  M. El-Sayed Spectroscopic determination of the melting energy of a gold nanorod , 2001 .

[364]  B. Korgel,et al.  The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[365]  E. Wang,et al.  Facile fabrication of large area of aggregated gold nanorods film for efficient surface-enhanced Raman scattering. , 2008, Journal of colloid and interface science.

[366]  R Atkinson,et al.  Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime. , 2008, Optics express.

[367]  Xiaohua Huang,et al.  Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. , 2006, Cancer letters.

[368]  Stephen Mann,et al.  Proceedings of the Chemical Society. November 1962 , 1962 .

[369]  Hiromi Okamoto,et al.  Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. , 2005, The journal of physical chemistry. B.

[370]  L. Liz‐Marzán,et al.  Silica gels with tailored, gold nanorod-driven optical functionalities , 2004 .

[371]  C. Schönenberger,et al.  Colloidal Dispersions of Gold Rods: Synthesis and Optical Properties , 2000 .

[372]  Xiaohua Huang,et al.  Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. , 2005, Nano letters.

[373]  H. Dvorak,et al.  Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. , 1988, The American journal of pathology.

[374]  Michael H. Huang,et al.  Seed-Mediated Synthesis of High Aspect Ratio Gold Nanorods with Nitric Acid , 2005 .

[375]  Hiroshi Nakashima,et al.  Self-assembly of gold nanorods induced by intermolecular interactions of surface-anchored lipids. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[376]  C. J. Murphy,et al.  Alignment of Gold Nanorods in Polymer Composites and on Polymer Surfaces , 2005 .