Some 0/1 polytopes need exponential size extended formulations

We prove that there are 0/1 polytopes $${P \subseteq \mathbb{R}^{n}}$$ that do not admit a compact LP formulation. More precisely we show that for every n there is a set $${X \subseteq \{ 0,1\}^n}$$ such that conv(X) must have extension complexity at least $${2^{n/2\cdot(1-o(1))}}$$ . In other words, every polyhedron Q that can be linearly projected on conv(X) must have exponentially many facets. In fact, the same result also applies if conv(X) is restricted to be a matroid polytope. Conditioning on $${\mathbf{NP}\not\subseteq \mathbf{P_{/poly}}}$$ , our result rules out the existence of a compact formulation for any $${\mathbf{NP}}$$ -hard optimization problem even if the formulation may contain arbitrary real numbers.

[1]  G. Ziegler Lectures on 0/1-Polytopes , 1999, math/9909177.

[2]  David Pritchard,et al.  An LP with Integrality Gap 1+epsilon for Multidimensional Knapsack , 2010, ArXiv.

[3]  Egon Balas,et al.  Disjunctive Programming: Properties of the Convex Hull of Feasible Points , 1998, Discret. Appl. Math..

[4]  Stephen A. Vavasis,et al.  On the Complexity of Nonnegative Matrix Factorization , 2007, SIAM J. Optim..

[5]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[6]  Hans Raj Tiwary,et al.  Exponential Lower Bounds for Polytopes in Combinatorial Optimization , 2011, J. ACM.

[7]  Michel X. Goemans,et al.  Smallest compact formulation for the permutahedron , 2015, Math. Program..

[8]  R. Kipp Martin,et al.  Using separation algorithms to generate mixed integer model reformulations , 1991, Oper. Res. Lett..

[9]  Claude E. Shannon,et al.  The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..

[10]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[11]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[12]  Francisco Barahona,et al.  On cuts and matchings in planar graphs , 1993, Math. Program..

[13]  Louis J. Billera,et al.  All 0–1 polytopes are traveling salesman polytopes , 1996, Comb..

[14]  Bert Gerards Compact systems for T-join and perfect matching polyhedra of graphs with bounded genus , 1991, Oper. Res. Lett..

[15]  Mihalis Yannakakis,et al.  Expressing combinatorial optimization problems by linear programs , 1991, STOC '88.

[16]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[17]  W. M. B. Dukes Bounds on the number of generalized partitions and some applications , 2003, Australas. J Comb..

[18]  V. Kaibel Extended Formulations in Combinatorial Optimization , 2011, 1104.1023.

[19]  András Frank,et al.  An application of simultaneous diophantine approximation in combinatorial optimization , 1987, Comb..

[20]  Daniel Bienstock,et al.  Approximate formulations for 0-1 knapsack sets , 2008, Oper. Res. Lett..

[21]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[22]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[23]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[24]  E. Balas Disjunctive programming and a hierarchy of relaxations for discrete optimization problems , 1985 .

[25]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[26]  Dirk Oliver Theis,et al.  Symmetry Matters for Sizes of Extended Formulations , 2012, SIAM J. Discret. Math..

[27]  Hans Raj Tiwary,et al.  Extended Formulations for Polygons , 2011, Discret. Comput. Geom..

[28]  William J. Cook,et al.  Combinatorial optimization , 1997 .