An integral method to determine variation in activation energy with extent of conversion

This paper proposes an integral method that uses local heating rates to evaluate the activation energy dependence on the extent of conversion. The method leads to consistent results with those from a differential isoconversional technique while regular integral isoconversional technique results in systematic errors in the activation energy with the extent of conversion. The method is validated from (1) simulated thermal analysis curves for a single reaction model, (2) simulated thermal analysis curves involving in two parallel reactions, and (3) non-isothermal dehydration of calcium oxalate monohydrate.

[1]  S. Vyazovkin,et al.  Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data , 1999 .

[2]  T. Ozawa A New Method of Analyzing Thermogravimetric Data , 1965 .

[3]  Marco J. Starink,et al.  The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods , 2003 .

[4]  J. Opfermann,et al.  Kinetic Analysis Using Multivariate Non-linear Regression. I. Basic concepts , 2000 .

[5]  Wight,et al.  Estimating realistic confidence intervals for the activation energy determined from thermoanalytical measurements , 2000, Analytical chemistry.

[6]  T. Tang,et al.  A new method for analysing non-isothermal thermoanalytical data from solid-state reactions , 1999 .

[7]  S. Vyazovkin,et al.  Isothermal and Nonisothermal Reaction Kinetics in Solids: In Search of Ways toward Consensus , 1997 .

[8]  S. Vyazovkin Computational aspects of kinetic analysis. Part C. The ICTAC Kinetics Project — the light at the end of the tunnel? , 2000 .

[9]  Sergey Vyazovkin,et al.  A unified approach to kinetic processing of nonisothermal data , 1996 .

[10]  Yuwen Liu,et al.  New approximate formula for Arrhenius temperature integral , 2003 .

[11]  Crisan Popescu,et al.  Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions A variant on the Ozawa-Flynn-Wall method , 1996 .

[12]  S. Vyazovkin,et al.  Kinetic analysis of reversible thermal decomposition of solids , 1995 .

[13]  H. L. Friedman,et al.  Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic , 2007 .

[14]  P. Budrugeac,et al.  On the Li and Tang's isoconversional method for kinetic analysis of solid-state reactions from thermoanalytical data , 2001 .

[15]  S. Vyazovkin Evaluation of activation energy of thermally stimulated solid‐state reactions under arbitrary variation of temperature , 1997 .

[16]  Sergey Vyazovkin,et al.  Modification of the integral isoconversional method to account for variation in the activation energy , 2001, J. Comput. Chem..

[17]  P. Budrugeac,et al.  Some methodological problems concerning nonisothermal kinetic analysis of heterogeneous solid–gas reactions , 2001 .

[18]  D. Dollimore,et al.  The effect of the reaction heat on kinetic analysis by TG under a rising temperature program. Part 1 , 1993 .

[19]  P. Budrugeac Differential Non-Linear Isoconversional Procedure for Evaluating the Activation Energy of Non-Isothermal Reactions , 2002 .

[20]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[21]  C. Popescu,et al.  A Differential Method Which Uses Local Heating Rates to Evaluate Non-isothermal Kinetic Parameters , 2000 .

[22]  E. Segal,et al.  A new method for the evaluation of non-isothermal kinetic parameters using integration over small temperature intervals and several heating rates , 1985 .

[23]  D. Homentcovschi,et al.  Critical Considerations on the Isoconversional Methods. III. On the evaluation of the activation energy from non-isothermal data , 2001 .

[24]  Joseph H. Flynn,et al.  A quick, direct method for the determination of activation energy from thermogravimetric data , 1966 .