The human pathobiont Malassezia furfur secreted protease Mfsap1 regulates cell dispersal and exacerbates skin inflammation

Significance Our skin is the primary exposure site of external microbiota, including the dominant fungus, Malassezia. The continual exchange of communication molecules between the microbes and the host enables host immune system sensing and response to the microbiota and vice versa. Here, we show that a Malassezia secretory protease causes increased inflammation in barrier-compromised skin and has important roles in enabling a planktonic cellular state that can potentially aid in colonization. Malassezia secretory proteases alter their external environment through proteolytic cleavage of extracellular host and microbial proteins, and control Malassezia cell adhesion. Taken together, our study shows these ubiquitous fungal proteases can be beneficial in healthy individuals but become virulence factors in individuals with a compromised skin barrier.

[1]  C. Deming,et al.  Integrating cultivation and metagenomics for a multi-kingdom view of skin microbiome diversity and functions , 2021, Nature Microbiology.

[2]  Si En Poh,et al.  Secretory Proteases of the Human Skin Microbiome , 2021, Infection and immunity.

[3]  D. Wolan,et al.  Selective Neutral pH Inhibitor of Cathepsin B Designed Based on Cleavage Preferences at Cytosolic and Lysosomal pH Conditions. , 2021, ACS chemical biology.

[4]  H. Madhani,et al.  Re-emerging Aspartic Protease Targets: Examining Cryptococcus neoformans Major Aspartyl Peptidase 1 as a Target for Antifungal Drug Discovery , 2021, Journal of medicinal chemistry.

[5]  J. Common,et al.  Cutaneous Malassezia: Commensal, Pathogen, or Protector? , 2021, Frontiers in Cellular and Infection Microbiology.

[6]  T. Boekhout,et al.  Malassezia spp. Yeasts of Emerging Concern in Fungemia , 2020, Frontiers in Cellular and Infection Microbiology.

[7]  J. Heitman,et al.  Expression of a Malassezia Codon Optimized mCherry Fluorescent Protein in a Bicistronic Vector , 2020, bioRxiv.

[8]  Si En Poh,et al.  Identification of Malassezia furfur Secreted Aspartyl Protease 1 (MfSAP1) and Its Role in Extracellular Matrix Degradation , 2020, Frontiers in Cellular and Infection Microbiology.

[9]  S. Leibundgut-Landmann,et al.  Infecting Mice with Malassezia spp. to Study the Fungus-Host Interaction. , 2019, Journal of visualized experiments : JoVE.

[10]  G. Janbon Faculty Opinions recommendation of The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. , 2019, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[11]  M. Glatz,et al.  Geographical and Ethnic Differences Influence Culturable Commensal Yeast Diversity on Healthy Skin , 2019, Front. Microbiol..

[12]  Hsin-Chun Huang,et al.  Malassezia furfur Emergence and Candidemia Trends in a Neonatal Intensive Care Unit During 10 Years , 2019, Advances in neonatal care : official journal of the National Association of Neonatal Nurses.

[13]  F. Sallusto,et al.  The Skin Commensal Yeast Malassezia Triggers a Type 17 Response that Coordinates Anti-fungal Immunity and Exacerbates Skin Inflammation. , 2019, Cell host & microbe.

[14]  T. Dawson Malassezia: The Forbidden Kingdom Opens. , 2019, Cell host & microbe.

[15]  S. Targan,et al.  Malassezia Is Associated with Crohn's Disease and Exacerbates Colitis in Mouse Models. , 2019, Cell host & microbe.

[16]  E. Arutyunova,et al.  Quantitative Multiplex Substrate Profiling of Peptidases by Mass Spectrometry* , 2019, Molecular & Cellular Proteomics.

[17]  J. Heitman,et al.  Loss of centromere function drives karyotype evolution in closely related Malassezia species , 2019, bioRxiv.

[18]  A. Colombo,et al.  Candida auris: What Have We Learned About Its Mechanisms of Pathogenicity? , 2018, Front. Microbiol..

[19]  W. Jung,et al.  Understanding the Mechanism of Action of the Anti-Dandruff Agent Zinc Pyrithione against Malassezia restricta , 2018, Scientific Reports.

[20]  D. Castelo-Branco,et al.  Malassezia pachydermatis from animals: Planktonic and biofilm antifungal susceptibility and its virulence arsenal. , 2018, Veterinary microbiology.

[21]  T. Boekhout,et al.  Malassezia ecology, pathophysiology, and treatment. , 2018, Medical mycology.

[22]  M. Fischbach,et al.  Skin microbiota–host interactions , 2018, Nature.

[23]  M. Raida,et al.  Skin Commensal Malassezia globosa Secreted Protease Attenuates Staphylococcus aureus Biofilm Formation. , 2017, The Journal of investigative dermatology.

[24]  L. Angiolella,et al.  Biofilm, adherence, and hydrophobicity as virulence factors in Malassezia furfur , 2018, Medical mycology.

[25]  E. Grice,et al.  Host-microbe interactions: Malassezia and human skin. , 2017, Current opinion in microbiology.

[26]  J. Paul Robinson,et al.  Guidelines for the use of flow cytometry and cell sorting in immunological studies. , 2017, European journal of immunology.

[27]  F. Ausubel,et al.  Investment in secreted enzymes during nutrient-limited growth is utility dependent , 2017, Proceedings of the National Academy of Sciences.

[28]  M. Glatz,et al.  Antifungal Susceptibility Testing of Malassezia spp. with an Optimized Colorimetric Broth Microdilution Method , 2017, Journal of Clinical Microbiology.

[29]  H. Madhani,et al.  Integrated Activity and Genetic Profiling of Secreted Peptidases in Cryptococcus neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival and Virulence , 2016, PLoS pathogens.

[30]  H. Sanchez,et al.  Large-scale production and isolation of Candida biofilm extracellular matrix , 2016, Nature Protocols.

[31]  J. Heitman,et al.  Gene Function Analysis in the Ubiquitous Human Commensal and Pathogen Malassezia Genus , 2016, mBio.

[32]  W. Jung,et al.  Efficacy and Safety of Cream Containing Climbazole/Piroctone Olamine for Facial Seborrheic Dermatitis: A Single-Center, Open-Label Split-Face Clinical Study , 2016, Annals of dermatology.

[33]  S. Molin,et al.  A Rhizobium leguminosarum CHDL- (Cadherin-Like-) Lectin Participates in Assembly and Remodeling of the Biofilm Matrix , 2016, Front. Microbiol..

[34]  Alexander D. Johnson,et al.  Global Identification of Biofilm-Specific Proteolysis in Candida albicans , 2016, mBio.

[35]  N. Prapasarakul,et al.  Biofilm production and antifungal susceptibility of co-cultured Malassezia pachydermatis and Candida parapsilosis isolated from canine seborrheic dermatitis. , 2016, Medical mycology.

[36]  A. Heger,et al.  UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy , 2016, bioRxiv.

[37]  L. Villa-Tanaca,et al.  Secreted fungal aspartic proteases: A review. , 2016, Revista iberoamericana de micologia.

[38]  Markus S. Schröder,et al.  Genus-Wide Comparative Genomics of Malassezia Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin , 2015, PLoS genetics.

[39]  P. Schmid‐Grendelmeier,et al.  The Role of Malassezia spp. in Atopic Dermatitis , 2015, Journal of clinical medicine.

[40]  A. Lauerma,et al.  Role of the skin microbiome in atopic dermatitis , 2014, Clinical and Translational Allergy.

[41]  J. Schwartz,et al.  Assessing therapeutic effectiveness of scalp treatments for dandruff and seborrheic dermatitis, part 1: a reliable and relevant method based on the adherent scalp flaking score (ASFS) , 2014, The Journal of dermatological treatment.

[42]  S. P. Fodor,et al.  Molecular indexing enables quantitative targeted RNA sequencing and reveals poor efficiencies in standard library preparations , 2014, Proceedings of the National Academy of Sciences.

[43]  R. Gallo,et al.  Structure and function of the human skin microbiome. , 2013, Trends in microbiology.

[44]  Fernanda L. Fonseca,et al.  The heat shock protein (Hsp) 70 of Cryptococcus neoformans is associated with the fungal cell surface and influences the interaction between yeast and host cells. , 2013, Fungal genetics and biology : FG & B.

[45]  A. Tosti,et al.  Therapeutic efficacy of anti‐dandruff shampoos: A randomized clinical trial comparing products based on potentiated zinc pyrithione and zinc pyrithione/climbazole , 2013, International journal of cosmetic science.

[46]  J. Heitman,et al.  Genomic Insights into the Atopic Eczema-Associated Skin Commensal Yeast Malassezia sympodialis , 2013, mBio.

[47]  Alma L Burlingame,et al.  Global identification of peptidase specificity by multiplex substrate profiling , 2012, Nature Methods.

[48]  S. Nakata,et al.  Increased hydrophobicity in Malassezia species correlates with increased proinflammatory cytokine expression in human keratinocytes. , 2012, Medical mycology.

[49]  J. Heitman,et al.  Malassezia Fungi Are Specialized to Live on Skin and Associated with Dandruff, Eczema, and Other Skin Diseases , 2012, PLoS pathogens.

[50]  M. Hantschke,et al.  The Malassezia Genus in Skin and Systemic Diseases , 2012, Clinical Microbiology Reviews.

[51]  U. Blume-Peytavi,et al.  New insights on dandruff/seborrhoeic dermatitis: the role of the scalp follicular infundibulum in effective treatment strategies , 2011, The British journal of dermatology.

[52]  Elizabeth A. Grice,et al.  The skin microbiome , 2020, Nature.

[53]  I. Yike Fungal Proteases and Their Pathophysiological Effects , 2011, Mycopathologia.

[54]  K. Gevaert,et al.  Improved visualization of protein consensus sequences by iceLogo , 2009, Nature Methods.

[55]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[56]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[57]  J. Potempa,et al.  Corruption of Innate Immunity by Bacterial Proteases , 2008, Journal of Innate Immunity.

[58]  P. Hu,et al.  Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens , 2007, Proceedings of the National Academy of Sciences.

[59]  T. Keough,et al.  Isolation and expression of a Malassezia globosa lipase gene, LIP1. , 2007, The Journal of investigative dermatology.

[60]  G. Quindós,et al.  Biofilm development by clinical isolates of Malassezia pachydermatis. , 2007, Medical mycology.

[61]  Dianna C. Kenneally,et al.  Three etiologic facets of dandruff and seborrheic dermatitis: Malassezia fungi, sebaceous lipids, and individual sensitivity. , 2005, The journal of investigative dermatology. Symposium proceedings.

[62]  W. Giang,et al.  Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. , 2005, BioTechniques.

[63]  T. Boekhout,et al.  Skin diseases associated with Malassezia species. , 2004, Journal of the American Academy of Dermatology.

[64]  S. Challacombe,et al.  Candida albicans Secreted Aspartyl Proteinases in Virulence and Pathogenesis , 2003, Microbiology and Molecular Biology Reviews.

[65]  J. Faergemann Atopic Dermatitis and Fungi , 2002, Clinical Microbiology Reviews.

[66]  O. Jousson,et al.  Secreted proteases from pathogenic fungi. , 2002, International journal of medical microbiology : IJMM.

[67]  R. Warner,et al.  Dandruff has an altered stratum corneum ultrastructure that is improved with zinc pyrithione shampoo. , 2001, Journal of the American Academy of Dermatology.

[68]  K. T. Holland,et al.  The effects of lipid extraction on the immunomodulatory activity of Malassezia species in vitro. , 2000, Medical mycology.

[69]  M. Rao,et al.  Molecular and Biotechnological Aspects of Microbial Proteases , 1998, Microbiology and Molecular Biology Reviews.

[70]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[71]  M. Rosenberg Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydrophobicity , 1984 .

[72]  K. Murata,et al.  Transformation of intact yeast cells treated with alkali cations. , 1984, Journal of bacteriology.

[73]  W. Russell,et al.  The Principles of Humane Experimental Technique , 1960 .