Production of α′H-belite-CSA cement at low firing temperatures

[1]  T. Robl,et al.  Study of Alite-Calcium Sulfoaluminate Cement Produced from a High-Alumina Fly Ash , 2022, ACI Materials Journal.

[2]  K. Ohenoja,et al.  The Effect of Fluoride and Iron Content on the Clinkering of Alite-Ye’elimite-Ferrite (AYF) Cement Systems , 2021, Frontiers in Built Environment.

[3]  A. Ayuela,et al.  Belite cements and their activation , 2021 .

[4]  H. Ludwig,et al.  Early hydration of C2S doped with combination of S and Li , 2020, SN Applied Sciences.

[5]  F. Glasser,et al.  Stabilisation of α′ dicalcium silicate in calcium sulfoaluminate clinker , 2020 .

[6]  W. Yao,et al.  Effect of coupled B/Na and B/Ba doping on hydraulic properties of belite-ye’elimite-ferrite cement , 2019, Construction and Building Materials.

[7]  Á. G. Torre,et al.  Alite-belite-ye'elimite cements: Effect of dopants on the clinker phase composition and properties , 2019, Cement and Concrete Research.

[8]  D. Shapiro,et al.  The Hydration of β- and α′H-Dicalcium Silicates: An X-ray Spectromicroscopic Study , 2018, ACS Sustainable Chemistry & Engineering.

[9]  Ö. Cizer,et al.  Report of TC 238-SCM: hydration stoppage methods for phase assemblage studies of blended cements—results of a round robin test , 2018, Materials and Structures.

[10]  B. Lothenbach,et al.  Using gypsum to control hydration kinetics of CSA cements , 2017 .

[11]  B. Lothenbach,et al.  Influence of fly ash on the hydration of calcium sulfoaluminate cement , 2017 .

[12]  J. Qian,et al.  Active sulfate-rich belite sulfoaluminate cement , 2017 .

[13]  H. Manzano,et al.  Hydration Mechanism of Reactive and Passive Dicalcium Silicate Polymorphs from Molecular Simulations , 2015 .

[14]  A. Tahakourt,et al.  Synthesis and Characterization of Belite Cement with High Hydraulic Reactivity and Low Environmental Impact , 2014 .

[15]  Á. G. Torre,et al.  Pseudocubic Crystal Structure and Phase Transition in Doped Ye’elimite , 2014 .

[16]  Xiao-dong Shen,et al.  Enhancing the addition of fly ash from thermal power plants in activated high belite sulfoaluminate cement , 2014 .

[17]  Á. G. Torre,et al.  Alite sulfoaluminate clinker: Rietveld mineralogical and SEM-EDX analysis , 2014 .

[18]  H. Ghoraba,et al.  High belite cement from alternative raw materials , 2014 .

[19]  Á. G. Torre,et al.  Hydration Reactions and Mechanical Strength Developments of Iron- Rich Sulfobelite Eco-cements , 2013 .

[20]  Yan Jun Liu,et al.  Mineral Waste Coupled with Boron Oxide for Producing Active Belite Cement Clinker , 2013 .

[21]  A. Ayuela,et al.  Structure, Atomistic Simulations, and Phase Transition of Stoichiometric Yeelimite , 2013 .

[22]  Á. G. Torre,et al.  Reactive belite stabilization mechanisms by boron-bearing dopants , 2012 .

[23]  J. Grossman,et al.  Understanding and Controlling the Reactivity of the Calcium Silicate phases from First Principles , 2012 .

[24]  S. Gomes,et al.  Effect of sulfur on the polymorphism and reactivity of dicalcium silicate of Portland clinker , 2011 .

[25]  H. Pöllmann,et al.  Active iron-rich belite sulfoaluminate cements: clinkering and hydration. , 2010, Environmental science & technology.

[26]  Z. Wang,et al.  Solutionizing of additional ions in belite-rich clinkers and the properties of the resulting cement , 2009 .

[27]  O. Jensen,et al.  Synthesis of pure Portland cement phases , 2009 .

[28]  P. Shih,et al.  The influence of heavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers produced from electroplating sludge. , 2009, Journal of hazardous materials.

[29]  Angélique Simon-Masseron,et al.  Synthesis of belite cement clinker of high hydraulic reactivity , 2009 .

[30]  S. Bruque,et al.  Structure and electrons in mayenite electrides. , 2008, Inorganic chemistry.

[31]  Á. G. Torre,et al.  Mineralogical phase analysis of alkali and sulfate bearing belite rich laboratory clinkers , 2007 .

[32]  S. C. Mojumdar,et al.  Hydration behavior of C2S and C2AS nanomaterials, synthetized by sol–gel method , 2006 .

[33]  E. Gartner Industrially interesting approaches to “low-CO2” cements ☆ , 2004 .

[34]  Á. G. Torre,et al.  Quantitative analysis of mineralized white Portland clinkers: The structure of Fluorellestadite , 2002, Powder Diffraction.

[35]  Javier Campo,et al.  The superstructure of C3S from synchrotron and neutron powder diffraction and its role in quantitative phase analyses , 2002 .

[36]  E. Jøns,et al.  The influence of earth alkalis on the mineralogy in a mineralized Portland cement clinker , 2001 .

[37]  P. Ballirano,et al.  Improved powder X-ray data for the cement phase Ca12Al14O32F2 (C11A7f) , 2000, Powder Diffraction.

[38]  F. Puertas,et al.  Elaboration of α’ L -C 2 S form of belite in phosphatic clinker. Study of hydraulic activity , 1998 .

[39]  E. Tillmanns,et al.  Ternesite, Ca5(SiO4)2SO4, a new mineral from the Ettringer Bellerberg/Eifel, Germany , 1997 .

[40]  A. Chatterjee High belite cements—Present status and future technological options: Part I , 1996 .

[41]  W. Nocuń-Wczelik,et al.  The dicalcium orthosilicate and its hydraulic activity examination by DTA-TG and calorimetric methods , 1995 .

[42]  M. Blanco-Varela,et al.  Solid state phases relationship in the CaOSiO2Al2O3CaF2CaSO4 system , 1995 .

[43]  R. J. Hill,et al.  Rietveld crystal structure refinements, crystal chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases , 1995 .

[44]  J. Bass,et al.  Orthorhombic perovskite CaTiO3 and CdTiO3: structure and space group , 1987 .

[45]  D. Knöfel,et al.  Influence of alkalies on the composition of belite-rich cement clinkers and the technological properties of the resulting cements , 1986 .

[46]  S. Ahluwalia,et al.  Thermal studies of the CaCO3: SiO2 (2:1) system containing lithium as dopant , 1986 .

[47]  F. Puertas,et al.  Examinations by infra-red spectroscopy for the polymorphs of dicalcium silicate , 1985 .

[48]  H. Effenberger,et al.  Untersuchungen zur Elektronendichteverteilung im Dolomit CaMg(CO3)2 , 1983 .

[49]  D. Semmingsen,et al.  Neutron diffraction refinement of the structure of gypsum, CaSO4.2H2O , 1982 .

[50]  G. Will,et al.  Charge density in anhydrite, CaSO4, from X-ray and neutron diffraction measurements , 1980 .

[51]  J. Jeffery,et al.  Structurally related dicalcium silicate phases , 1980 .

[52]  T. Yano,et al.  Refinement of the crystal structure of ?-Ca2SiO4 , 1980 .

[53]  S. Ghosh,et al.  The chemistry of dicalcium silicate mineral , 1979 .

[54]  J. Bensted Some hydration studies of α-dicalcium silicate , 1979 .

[55]  S. Ghosh,et al.  Thermal decomposition of CaCO3 and formation of β-Ca2SiO4 , 1978 .

[56]  J. Jeffery,et al.  The crystal structure of tricalcium aluminate, Ca3Al2O6 , 1975 .

[57]  S. Geller,et al.  The crystal structure of brownmillerite, Ca2FeAlO5 , 1971 .

[58]  D. K. Smith,et al.  Low-temperature thermal expansion of LiH, MgO and CaO , 1968 .

[59]  C. Midgley The crystal structure of dicalcium silicate , 1952 .