Visual masking and RSVP reveal neural competition

A test visual stimulus is harder to recognize when another stimulus is presented in close temporal vicinity; presenting stimuli in close spatial vicinity of a test stimulus reduces its visibility; presenting a stimulus to one eye can render invisible another stimulus presented to the other eye; and perceiving one interpretation of an ambiguous image prevents the simultaneous perception of other visual interpretations. A single, neurophysiological theory, which may be called 'neural competition' might explain all these phenomena: when two alternative neural visual representations co-exist in the brain, they compete against each other.

[1]  David L. Sheinberg,et al.  The role of temporal cortical areas in perceptual organization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[2]  R. Desimone Visual attention mediated by biased competition in extrastriate visual cortex. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[3]  D. Purves,et al.  Similarities in normal and binocularly rivalrous viewing. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[4]  D. Kahneman Method, findings, and theory in studies of visual masking. , 1968, Psychological bulletin.

[5]  W. Levick,et al.  Responses of cat retinal ganglion cells to brief flashes of light , 1970, The Journal of physiology.

[6]  P. H. Schiller Single unit analysis of backward visual masking and metacontrast in the cat lateral geniculate nucleus. , 1968, Vision research.

[7]  E. Rolls,et al.  The Neurophysiology of Backward Visual Masking: Information Analysis , 1999, Journal of Cognitive Neuroscience.

[8]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[9]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[10]  J M Wolfe,et al.  Influence of Spatial Frequency, Luminance, and Duration on Binocular Rivalry and Abnormal Fusion of Briefly Presented Dichoptic Stimuli , 1983, Perception.

[11]  M. Potter,et al.  A two-stage model for multiple target detection in rapid serial visual presentation. , 1995, Journal of experimental psychology. Human perception and performance.

[12]  G Kovács,et al.  Cortical correlate of pattern backward masking. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Victor A. F. Lamme Blindsight: the role of feedforward and feedback corticocortical connections. , 2001, Acta psychologica.

[14]  J. Gore,et al.  Neural Correlates of the Attentional Blink , 2000, Neuron.

[15]  C Koch,et al.  Seeing properties of an invisible object: Feature inheritance and shine-through , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[17]  Timothy J. Andrews,et al.  Form and motion have independent access to consciousness , 1999, Nature Neuroscience.

[18]  Bruno G. Breitmeyer,et al.  Visual masking : an integrative approach , 1984 .

[19]  P. Fldik,et al.  The Speed of Sight , 2001, Journal of Cognitive Neuroscience.

[20]  Jeremy M. Wolfe,et al.  Reversing ocular dominance and suppression in a single flash , 1984, Vision Research.

[21]  Jack M. Loomis,et al.  Lateral masking in foveal and eccentric vision , 1978, Vision Research.

[22]  S. Engel,et al.  Interocular rivalry revealed in the human cortical blind-spot representation , 2001, Nature.

[23]  D. Perrett,et al.  Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. , 1996, Journal of neurophysiology.

[24]  N. Logothetis,et al.  Visual competition , 2002, Nature Reviews Neuroscience.

[25]  N. Logothetis,et al.  Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry , 1996, Nature.

[26]  J. Hell,et al.  Motion-induced blindness in normal observers , 2022 .

[27]  N. Logothetis,et al.  Multistable phenomena: changing views in perception , 1999, Trends in Cognitive Sciences.

[28]  M. Coltheart,et al.  Iconic memory and visible persistence , 1980, Perception & psychophysics.

[29]  D. Heeger,et al.  Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry , 2000, Nature Neuroscience.

[30]  N. Logothetis Single units and conscious vision. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[31]  D. Lindsley,et al.  Electrophysiological correlates of visual perceptual masking in monkeys , 2004, Experimental Brain Research.

[32]  M Coltheart,et al.  The persistences of vision. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[33]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[34]  J. Enns,et al.  What’s new in visual masking? , 2000, Trends in Cognitive Sciences.

[35]  G. S. Wasserman,et al.  Visual masking: mechanisms and theories. , 1980, Psychological bulletin.

[36]  M. Tovée,et al.  Processing speed in the cerebral cortex and the neurophysiology of visual masking , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[37]  U. Eysel,et al.  Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques , 1998, The European journal of neuroscience.

[38]  R. Desimone,et al.  Responses of Neurons in Inferior Temporal Cortex during Memory- Guided Visual Search , 1998 .