Beds: Bagging Ensemble Deep Segmentation For Nucleus Segmentation With Testing Stage Stain Augmentation

Reducing outcome variance is an essential task in deep learning based medical image analysis. Bootstrap aggregating, also known as bagging, is a canonical ensemble algorithm for aggregating weak learners to become a strong learner. Random forest is one of the most powerful machine learning algorithms before deep learning era, whose superior performance is driven by fitting bagged decision trees (weak learners). Inspired by the random forest technique, we propose a simple bagging ensemble deep segmentation (BEDs) method to train multiple U-Nets with partial training data to segment dense nuclei on pathological images. The contributions of this study are three-fold: (1) developing a self-ensemble learning framework for nucleus segmentation; (2) aggregating testing stage augmentation with self-ensemble learning; and (3) elucidating the idea that self-ensemble and testing stage stain augmentation are complementary strategies for a superior segmentation performance. Implementation Detail: https://github.com/xingli1102/BEDs.

[1]  Yilong Li,et al.  U-net Ensemble Model for Segmentation inHistopathology Images , 2019 .

[2]  Qianjin Feng,et al.  Integrative Analysis of Histopathological Images and Genomic Data Predicts Clear Cell Renal Cell Carcinoma Prognosis. , 2017, Cancer research.

[3]  Konstantinos Kamnitsas,et al.  Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation , 2017, BrainLes@MICCAI.

[4]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[5]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Klaus H. Maier-Hein,et al.  No New-Net , 2018, 1809.10483.

[7]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[8]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Nassir Navab,et al.  Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images , 2016, IEEE Transactions on Medical Imaging.

[10]  Surabhi Bhargava,et al.  A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology , 2017, IEEE Transactions on Medical Imaging.

[11]  Yuwei Zhang,et al.  Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types , 2020, Scientific Data.