Symmetry‐adapted perturbation theory potential for the HeK+ molecular ion and transport coefficients of potassium ions in helium

The interaction potential for the HeK+ system has been computed as the sum of attractive and repulsive contributions due to the electrostatic, exchange, induction, and dispersion interactions using the symmetry‐adapted perturbation theory and a high‐level treatment of electron correlation. The zero of the theoretical potential occurs at 4.704 bohr and the minimum occurs at 5.418 bohr where the potential value is −0.779 mhartree. The potential supports 36 bound rovibrational levels, and the ground state of the HeK+ molecular ion is bound by 125.1 cm−1. For all interatomic distances the ab initio potential agrees very well with the empirical potential obtained by direct inversion of the K+ mobilities in gaseous helium and disagrees with the potential obtained from the ion–beam scattering cross section data. The ab initio potential has been used to compute the transport coefficients of potassium ions in helium gas over a wide range of temperature and reduced field strength. A very good agreement of the calcu...

[1]  P. Wormer,et al.  Near‐infrared spectrum and rotational predissociation dynamics of the He–HF complex from an ab initio symmetry‐adapted perturbation theory potential , 1994 .

[2]  P. Wormer,et al.  Rovibrational spectra of Ar-H2 and Ar-D2 Van der Waals complexes from an ab initio SAPT potential , 1994 .

[3]  K. Szalewicz,et al.  Many‐body theory of exchange effects in intermolecular interactions. Density matrix approach and applications to He–F−, He–HF, H2–HF, and Ar–H2 dimers , 1994 .

[4]  Sl,et al.  Many‐body theory of intermolecular induction interactions , 1994 .

[5]  K. Szalewicz,et al.  Many‐body theory of exchange effects in intermolecular interactions. Second‐quantization approach and comparison with full configuration interaction results , 1994 .

[6]  Larry A. Viehland,et al.  Velocity distribution functions and transport coefficients of atomic ions in atomic gases by a Gram—Charlier approach , 1994 .

[7]  Stanisl,et al.  Many‐body perturbation theory of electrostatic interactions between molecules: Comparison with full configuration interaction for four‐electron dimers , 1993 .

[8]  M. Gutowski,et al.  Critical evaluation of some computational approaches to the problem of basis set superposition error , 1993 .

[9]  H. Böhm,et al.  Erratum: Interaction potentials for alkali ion‐rare gas and halogen ion‐rare gas systems [J. Chem. Phys. 88, 6290 (1988)] , 1993 .

[10]  K. Szalewicz,et al.  Symmetry-adapted perturbation theory calculation of the He-HF intermolecular potential energy surface , 1993 .

[11]  K. Szalewicz,et al.  Møller–Plesset expansion of the dispersion energy in the ring approximation , 1993 .

[12]  K. Szalewicz,et al.  On the convergence of the symmetrized Rayleigh-Schrödinger perturbation theory for molecular interaction energies , 1992 .

[13]  K. Szalewicz,et al.  Many-body symmetry-adapted perturbation theory study of the He⋯F− interaction , 1992 .

[14]  I. Røeggen,et al.  Mobility and diffusion of lithium ions in neon , 1992 .

[15]  M. Henkel,et al.  Anisotropic interactional potentials for HeCH4, HeCH3Cl, HeCH2Cl2, HeCHCl3, and HeCCl4 from molecular beam scattering , 1992 .

[16]  Stanisl,et al.  Many‐body symmetry‐adapted perturbation theory of intermolecular interactions. H2O and HF dimers , 1991 .

[17]  V. Kellö,et al.  Interaction potentials in rare gas-halide ion systems , 1991 .

[18]  P. P. Ong,et al.  A study of K+–He and K+–Kr atomic interaction potentials based on transverse diffusion measurements , 1991 .

[19]  P. P. Ong,et al.  An appraisal of the three-temperature theory and the interaction potentials of K + -He and K + -Kr by Monte Carlo Simulation , 1991 .

[20]  R. Brandt,et al.  Anisotropic intermolecular potentials for HeC6H6 and HeC5H5N from total differential cross section measurements , 1991 .

[21]  Julia E. Rice,et al.  The calculation of frequency‐dependent polarizabilities as pseudo‐energy derivatives , 1991 .

[22]  S. Patil Interaction of inert‐gas atoms with some closed‐shell cations and formation of cluster molecules , 1991 .

[23]  E. A. Mason,et al.  Interaction universality and scaling laws for interaction potentials between closed-shell atoms and ions , 1990 .

[24]  P. P. Ong,et al.  Measurements of DT/μ of Na+ ions in argon and neon , 1990 .

[25]  P. Jankowski,et al.  Symmetry‐adapted perturbation theory calculation of the intra‐atomic correlation contribution to the short‐range repulsion of helium atoms , 1990 .

[26]  R. Moszynski,et al.  Correlation correction to the Hartree-Fock electrostatic energy including orbital relaxation , 1990 .

[27]  G. Diercksen,et al.  Interaction in halide ion-rare gas systems: The Cl−…He interaction potential , 1989 .

[28]  G. Diercksen,et al.  Interactions in the halide ion-rare gas systems: The F−…He interaction potential , 1989 .

[29]  Rodney J. Bartlett,et al.  Analytic energy derivatives in many‐body methods. I. First derivatives , 1989 .

[30]  U. Kaldor,et al.  Many-Body Methods in Quantum Chemistry , 1989 .

[31]  V. Kellö,et al.  Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties , 1991 .

[32]  Jeremy M. Hutson,et al.  The intermolecular potential of Ne–HCl: Determination from high‐resolution spectroscopy , 1988 .

[33]  H. Skullerud,et al.  Measurements of transport coefficients for lithium ions in argon and helium ions in helium with a drift-tube mass spectrometer , 1988 .

[34]  M. Keil,et al.  Anisotropic intermolecular potentials for HeC2H2, HeC2H4, and HeC2H6, and an effective spherical potential for HeCHF3 from multiproperty fits , 1988 .

[35]  Jiří Čížek,et al.  Direct calculation of the Hartree–Fock interaction energy via exchange–perturbation expansion. The He … He interaction , 1987 .

[36]  Krzysztof Szalewicz,et al.  Intraatomic correlation effects for the He–He dispersion and exchange–dispersion energies using explicitly correlated Gaussian geminals , 1987 .

[37]  M. Gutowski,et al.  The impact of higher polarization functions of second-order dispersion energy. Partial wave expansion and damping phenomenon for He2☆ , 1987 .

[38]  R. L. Roy,et al.  Improved potential energy surfaces for the interaction of H2 with Ar, Kr, and Xe , 1987 .

[39]  P. Siska A modified Tang–Toennies model for ion–atom potential curves , 1986 .

[40]  G. Diercksen,et al.  MBPT studies of van der Waals molecules , 1986 .

[41]  K. Tang,et al.  New combining rules for well parameters and shapes of the van der Waals potential of mixed rare gas systems , 1986 .

[42]  H. Skullerud,et al.  Transverse Diffusion of Lithium Ions in Helium , 1986 .

[43]  R. A. Cassidy,et al.  The mobility of K + ions in helium and argon , 1986 .

[44]  L. Viehland,et al.  Interaction potentials for the alkali ion—rare-gas systems , 1985 .

[45]  M. Gutowski,et al.  Effective basis sets for calculations of exchange‐repulsion energy , 1984 .

[46]  L. Bartolotti Variation‐perturbation theory within a time‐dependent Kohn–Sham formalism: An application to the determination of multipole polarizabilities, spectral sums, and dispersion coefficients , 1984 .

[47]  K. Tang,et al.  An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients , 1984 .

[48]  E. A. Mason,et al.  Repulsive interactions of closed‐shell ions with Ar, Kr, and Xe atoms: Comparison of beam and transport measurements , 1984 .

[49]  L. Viehland Interaction potentials for Li+—rare-gas systems , 1983 .

[50]  E. Gislason,et al.  Comment on ‘‘Recent determinations of potassium ion–rare gas potentials’’ , 1983 .

[51]  L. Viehland Gaseous ion transport coefficients , 1982 .

[52]  A. Thakkar The generator coordinate method applied to variational perturbation theory. Multipole polarizabilities, spectral sums, and dispersion coefficients for helium , 1981 .

[53]  A. J. Sadlej Long range induction and dispersion interactions between Hartree-Fock subsystems , 1980 .

[54]  M. Jaszuński Coupled Hartree-Fock calculation of the induction energy , 1980 .

[55]  P. Wormer,et al.  Ab initio studies of the interactions in Van der Waals molecules , 1980 .

[56]  L. Viehland,et al.  Application of the three-temperatue theory of gaseous ion transport , 1979 .

[57]  Marvin Waldman,et al.  Scaled electron gas approximation for intermolecular forces , 1979 .

[58]  K. Szalewicz,et al.  Symmetry-adapted double-perturbation analysis of intramolecular correlation effects in weak intermolecular interactions , 1979 .

[59]  E. A. Mason,et al.  Three-temperature theory of gaseous ion transport , 1979 .

[60]  F. B. Holleman,et al.  Mobilities and interaction potentials for Br−–Ar, Br−–Kr, and Br−–Xe , 1978 .

[61]  K. Szalewicz,et al.  Symmetry forcing and convergence properties of perturbation expansions for molecular interaction energies , 1978 .

[62]  E. A. Mason,et al.  A justification of methods for the inversion of gas transport coefficients , 1978 .

[63]  E. A. Mason,et al.  Gaseous ion mobility and diffusion in electric fields of arbitrary strength , 1978 .

[64]  E. Gislason,et al.  Determination of potassium ion–rare gas potentials from total cross section measurements , 1977 .

[65]  E. W. McDaniel,et al.  The Li+–He interaction potential , 1977 .

[66]  K. Szalewicz,et al.  On the multipole structure of exchange dispersion energy in the interaction of two helium atoms , 1977 .

[67]  E. A. Mason,et al.  Tests of alkali ion‐inert gas interaction potentials by gaseous ion mobility experiments , 1977 .

[68]  Giacinto Scoles,et al.  Intermolecular forces in simple systems , 1977 .

[69]  E. A. Mason,et al.  Direct determination of ion-neutral molecule interaction potentials from gaseous ion mobility measurements , 1976 .

[70]  B. Jeziorski,et al.  On the exchange polarization effects in the interaction of two helium atoms , 1976 .

[71]  K. Noda,et al.  Repulsive potentials for Cl−–R and Br−–R (R=He, Ne, and Ar) derived from beam experiments , 1976 .

[72]  B. Jeziorski,et al.  Variation-perturbation treatment of the hydrogen bond between water molecules , 1976 .

[73]  L. Piela,et al.  First-order perturbation treatment of the short-range repulsion in a system of many closed-shell atoms or molecules , 1976 .

[74]  N. Takata Mobilities of Li', Na' and K+ ions in He gas , 1975 .

[75]  E. A. Mason,et al.  Gaseous lon mobility in electric fields of arbitrary strength , 1975 .

[76]  E. W. McDaniel,et al.  Longitudinal diffusion of K+ ions in He, Ne, Ar, H2, NO, O2, CO2, N2, and CO , 1975 .

[77]  E. W. McDaniel,et al.  Mobilities of K+ ions in He, Ne, H2, O2, NO, and CO2 , 1975 .

[78]  R. Robson,et al.  The determination of ion-atom interaction potentials , 1974 .

[79]  R. P. Creaser Measured mobility and derived interaction potentials for K+ ions in rare gases , 1974 .

[80]  R. Robson,et al.  The mobility of potassium ions in gas mixtures , 1973 .

[81]  R. J. Cross,et al.  Molecular beam determination of alkali ion‐rare gas potentials , 1973 .

[82]  B. Jeziorski,et al.  Exact calculation of exchange polarization energy for H ion , 1973 .

[83]  Edward A. Mason,et al.  The mobility and diffusion of ions in gases , 1973 .

[84]  H. Inouye,et al.  Experimental Determination of the Repulsive Potentials between K+ Ions and Rare‐Gas Atoms , 1972 .

[85]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[86]  W. J. Meath,et al.  Charge‐Overlap Effects. Dispersion and Induction Forces , 1969 .

[87]  L. Wolniewicz Vibrational—Rotational Study of the Electronic Ground State of the Hydrogen Molecule , 1966 .

[88]  J. W. Cooley,et al.  An improved eigenvalue corrector formula for solving the Schrödinger equation for central fields , 1961 .

[89]  Enrico Clementi,et al.  Modern Techniques in Computational Chemistry: MOTECC™ -89 , 1899 .