Plasma lysosphingolipids in GRN-related diseases: Monitoring lysosomal dysfunction to track disease progression

[1]  Ying Sun,et al.  PGRN deficiency exacerbates, whereas a brain penetrant PGRN derivative protects, GBA1 mutation-associated pathologies and diseases , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[2]  J. Pariente,et al.  Brain Metabolic Profile in Presymptomatic GRN Carriers Throughout a 5-Year Follow-up , 2022, Neurology.

[3]  Robert V Farese,et al.  Deficiency of the frontotemporal dementia gene GRN results in gangliosidosis , 2022, Nature Communications.

[4]  Jennifer M. Nicholas,et al.  Temporal order of clinical and biomarker changes in familial frontotemporal dementia , 2022, Nature Medicine.

[5]  B. Boeve,et al.  Advances and controversies in frontotemporal dementia: diagnosis, biomarkers, and therapeutic considerations , 2022, The Lancet Neurology.

[6]  J. Pariente,et al.  Plasma NfL levels and longitudinal change rates in C9orf72 and GRN-associated diseases: from tailored references to clinical applications , 2021, Journal of Neurology, Neurosurgery, and Psychiatry.

[7]  Sheng-Yang M. Goh,et al.  Plasma Neurofilament Light for Prediction of Disease Progression in Familial Frontotemporal Lobar Degeneration , 2021, Neurology.

[8]  C. Lourenço,et al.  Quantification of lysosphingomyelin and lysosphingomyelin-509 for the screening of acid sphingomyelinase deficiency , 2021, Orphanet Journal of Rare Diseases.

[9]  N. Seyfried,et al.  Network analysis of the progranulin-deficient mouse brain proteome reveals pathogenic mechanisms shared in human frontotemporal dementia caused by GRN mutations , 2020, Acta Neuropathologica Communications.

[10]  N. Seyfried,et al.  Network analysis of the progranulin-deficient mouse brain proteome reveals pathogenic mechanisms shared in human frontotemporal dementia caused by GRN mutations , 2020, Acta neuropathologica communications.

[11]  G. Lopez,et al.  Pro-cathepsin D, Prosaposin, and Progranulin: Lysosomal Networks in Parkinsonism. , 2020, Trends in molecular medicine.

[12]  Haiyuan Yu,et al.  Loss of TMEM106B and PGRN leads to severe lysosomal abnormalities and neurodegeneration in mice , 2020, EMBO reports.

[13]  P. Worley,et al.  Neuronal pentraxin 2: a synapse-derived CSF biomarker in genetic frontotemporal dementia , 2020, Journal of Neurology, Neurosurgery, and Psychiatry.

[14]  B. Dubois,et al.  Plasma progranulin levels for frontotemporal dementia in clinical practice: a 10-year French experience , 2020, Neurobiology of Aging.

[15]  G. Frisoni,et al.  Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia , 2020, Journal of Neurology, Neurosurgery, and Psychiatry.

[16]  C. Duyckaerts,et al.  Homozygous GRN mutations: new phenotypes and new insights into pathological and molecular mechanisms. , 2019, Brain : a journal of neurology.

[17]  Nick C Fox,et al.  Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study , 2019, The Lancet Neurology.

[18]  Nick C Fox,et al.  Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study , 2019, The Lancet Neurology.

[19]  D. Krainc,et al.  Progranulin mutations result in impaired processing of prosaposin and reduced glucocerebrosidase activity. , 2019, Human molecular genetics.

[20]  David T. Jones,et al.  Use of the CDR® plus NACC FTLD in mild FTLD: Data from the ARTFL/LEFFTDS consortium , 2019, Alzheimer's & Dementia.

[21]  L. Grinberg,et al.  NEURONAL SORTING AND DEGRADATION OF TAU BY THE ENDOLYSOSOMAL PATHWAY AND RAB35 IN HIPPOCAMPAL PATHOLOGY , 2019, Alzheimer's & Dementia.

[22]  A. Rolfs,et al.  Glucosylsphingosine (lyso-Gb1) as a Biomarker for Monitoring Treated and Untreated Children with Gaucher Disease , 2019, International journal of molecular sciences.

[23]  M. Plebani,et al.  Plasma and dried blood spot lysosphingolipids for the diagnosis of different sphingolipidoses: a comparative study , 2019, Clinical chemistry and laboratory medicine.

[24]  C. Craik,et al.  Progranulin Stimulates the In Vitro Maturation of Pro-Cathepsin D at Acidic pH. , 2019, Journal of molecular biology.

[25]  Ying Sun,et al.  Progranulin deficiency leads to reduced glucocerebrosidase activity , 2019, bioRxiv.

[26]  S. Illarioshkin,et al.  Blood lysosphingolipids accumulation in patients with parkinson's disease with glucocerebrosidase 1 mutations , 2018, Movement disorders : official journal of the Movement Disorder Society.

[27]  D. Ory,et al.  A HILIC-MS/MS method for simultaneous quantification of the lysosomal disease markers galactosylsphingosine and glucosylsphingosine in mouse serum. , 2018, Biomedical chromatography : BMC.

[28]  Yuehong Chen,et al.  Molecular regulations and therapeutic targets of Gaucher disease. , 2018, Cytokine & growth factor reviews.

[29]  Tuancheng Feng,et al.  The lysosomal function of progranulin, a guardian against neurodegeneration , 2018, Acta Neuropathologica.

[30]  P. Latour,et al.  Contribution of tandem mass spectrometry to the diagnosis of lysosomal storage disorders , 2018, Journal of Inherited Metabolic Disease.

[31]  D. Krainc,et al.  Progranulin-mediated deficiency of cathepsin D results in FTD and NCL-like phenotypes in neurons derived from FTD patients , 2017, Human molecular genetics.

[32]  P. Latour,et al.  LC-MS/MS multiplex analysis of lysosphingolipids in plasma and amniotic fluid: A novel tool for the screening of sphingolipidoses and Niemann-Pick type C disease , 2017, PloS one.

[33]  W. Seeley,et al.  Impaired prosaposin lysosomal trafficking in frontotemporal lobar degeneration due to progranulin mutations , 2017, Nature Communications.

[34]  Param Priya Singh,et al.  Progranulin, lysosomal regulation and neurodegenerative disease , 2017, Nature Reviews Neuroscience.

[35]  Susan L Cotman,et al.  Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis , 2017, Science Translational Medicine.

[36]  Haiqun Lin,et al.  Glucosylsphingosine is a key biomarker of Gaucher disease , 2016, American journal of hematology.

[37]  G. Poda,et al.  Structure of Human Acid Sphingomyelinase Reveals the Role of the Saposin Domain in Activating Substrate Hydrolysis. , 2016, Journal of molecular biology.

[38]  Ying Sun,et al.  Prosaposin facilitates sortilin-independent lysosomal trafficking of progranulin , 2015, The Journal of cell biology.

[39]  M. Nishihara,et al.  Possible involvement of lysosomal dysfunction in pathological changes of the brain in aged progranulin-deficient mice , 2014, Acta neuropathologica communications.

[40]  E. Kremmer,et al.  Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis , 2014, Acta Neuropathologica.

[41]  P. Tsai,et al.  A hexanucleotide repeat expansion in C9ORF72 causes familial and sporadic ALS in Taiwan , 2012, Neurobiology of Aging.

[42]  Katherine R. Smith,et al.  Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. , 2012, American journal of human genetics.

[43]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[44]  M. V. van Breemen,et al.  Elevated plasma glucosylsphingosine in Gaucher disease: relation to phenotype, storage cell markers, and therapeutic response. , 2011, Blood.

[45]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[46]  Nick C Fox,et al.  Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. , 2011, Brain : a journal of neurology.

[47]  L. Petrucelli,et al.  Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggest a role for progranulin in successful aging. , 2010, The American journal of pathology.

[48]  A. Bateman,et al.  The granulin gene family: from cancer to dementia , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[49]  G. Binetti,et al.  Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration , 2008, Neurology.

[50]  C. Duijn,et al.  Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 , 2006, Nature.

[51]  S. Melquist,et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.

[52]  C. Morales,et al.  The Lysosomal Trafficking of Acid Sphingomyelinase is Mediated by Sortilin and Mannose 6‐phosphate Receptor , 2006, Traffic.