OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particle swarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzy clustering problem, especially for large sizes. When the problem becomes large, the FCM algorithm may result in uneven distribution of data, making it difficult to find an optimal solution in reasonable amount of time. The PSO algorithm does find a good or near-optimal solution in reasonable time, but we show that its performance may be improved by seeding the initial swarm with the result of the c-means algorithm. Various clustering simulations are experimentally compared with the FCM algorithm in order to illustrate the efficiency and ability of the proposed algorithms.

[1]  Thomas A. Runkler,et al.  Fuzzy Clustering by Particle Swarm Optimization , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[2]  Thomas A. Runkler Ant colony optimization of clustering models , 2005, Int. J. Intell. Syst..

[3]  Lawrence O. Hall,et al.  Fuzzy ant clustering by centroid positioning , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[4]  Yangyang Zhang,et al.  Particle swarm optimization for mobile ad hoc networks clustering , 2004, IEEE International Conference on Networking, Sensing and Control, 2004.

[5]  Andries Petrus Engelbrecht,et al.  Data clustering using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[6]  Parag M. Kanade,et al.  Fuzzy ants as a clustering concept , 2003, 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003.

[7]  Raghuveer M. Rao,et al.  Particle swarm optimization for the clustering of wireless sensors , 2003, SPIE Defense + Commercial Sensing.

[8]  Marco Dorigo,et al.  Strategies for the Increased Robustness of Ant-Based Clustering , 2003, Engineering Self-Organising Systems.

[9]  Andries P. Engelbrecht,et al.  Image Classification using Particle Swarm Optimization , 2002, SEAL.

[10]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[11]  Noureddine Zahid,et al.  A new cluster-validity for fuzzy clustering , 1999, Pattern Recognit..

[12]  X. Yao Evolving Artificial Neural Networks , 1999 .

[13]  Frank Klawonn,et al.  Fuzzy clustering with evolutionary algorithms , 1998, Int. J. Intell. Syst..

[14]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[15]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[16]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[17]  George J. Klir,et al.  Fuzzy sets and fuzzy logic , 1995 .

[18]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[19]  James C. Bezdek,et al.  Optimization of fuzzy clustering criteria using genetic algorithms , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[20]  Siegfried Gottwald,et al.  Fuzzy Sets and Fuzzy Logic , 1993 .

[21]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[22]  T. Gu,et al.  Similarity of classes and fuzzy clustering , 1990 .

[23]  Madan M. Gupta,et al.  Fuzzy Computing: Theory, Hardware, and Applications , 1988 .

[24]  J. Bezdek,et al.  Recent convergence results for the fuzzy c-means clustering algorithms , 1988 .

[25]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[26]  M. Roubens Fuzzy clustering algorithms and their cluster validity , 1982 .

[27]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[28]  M. Roubens Pattern classification problems and fuzzy sets , 1978 .

[29]  Raymond T Yeh,et al.  FUZZY RELATIONS, FUZZY GRAPHS, AND THEIR APPLICATIONS TO CLUSTERING ANALYSIS , 1975 .

[30]  J. Bezdek Cluster Validity with Fuzzy Sets , 1973 .

[31]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[32]  Enrique H. Ruspini,et al.  Numerical methods for fuzzy clustering , 1970, Inf. Sci..