Classification of Natural Images Using Supervised and Unsupervised Classifier Combinations

Combining classifiers has proved to be an effective solution to several classification problems in pattern recognition. In this paper we use classifier combination methods for the classification of natural images. In the image classification, it is often beneficial to consider each feature type separately, and combine the classification results in the final classifier. We present a classifier combination strategy that is based on classification result vector, CRV. It can be applied both in supervised and unsupervised manner. In this paper we apply our classifier combination method to the classification of rock images that are non-homogenous in terms of their color and texture properties.

[1]  Steven J. Simske,et al.  Performance analysis of pattern classifier combination by plurality voting , 2003, Pattern Recognit. Lett..

[2]  Majid Ahmadi,et al.  Recognition of handwritten numerals with multiple feature and multistage classifier , 1995, Pattern Recognit..

[3]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Josef Kittler,et al.  Experimental evaluation of expert fusion strategies , 1999, Pattern Recognit. Lett..

[5]  Ari Visa,et al.  Classification method for colored natural textures using Gabor filtering , 2003, 12th International Conference on Image Analysis and Processing, 2003.Proceedings..

[6]  David G. Stork,et al.  Pattern Classification , 1973 .

[7]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  K JainAnil,et al.  Combining multiple matchers for a high security fingerprint verification system , 1999 .

[9]  Anil K. Jain,et al.  Combining classifiers for face recognition , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[10]  Robert P. W. Duin,et al.  The combining classifier: to train or not to train? , 2002, Object recognition supported by user interaction for service robots.

[11]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[12]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[13]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[14]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[15]  Ari Visa,et al.  Classification of nonhomogenous texture images by combining classifiers , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[16]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[17]  Roberto Brunelli,et al.  Person identification using multiple cues , 1995, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Anil K. Jain,et al.  Combining multiple matchers for a high security fingerprint verification system , 1999, Pattern Recognit. Lett..