The sequential processing of visual motion in the human electroretinogram and visual evoked potential

Mechanisms of motion vision in the human have been studied extensively by psychophysical methods but less frequently by electrophysiological techniques. It is the purpose of the present investigation to study electrical potentials of the eye (electroretinogram, ERG) and of the brain (visual evoked potential, VEP) in response to moving regular square-wave stripe patterns spanning a wide range of contrasts, spatial frequencies, and speeds. The results show that ERG amplitudes increase linearly with contrast while VEPs, in agreement with the literature, show an amplitude saturation at low contrast. Furthermore, retinal responses oscillate with the fundamental temporal stimulus frequency of the moving pattern while brain responses do not. In both the retina and the brain, the response amplitudes are tuned to certain speeds which is in agreement with the nonlinear correlation-type motion detector. Along the ascending slopes (which means increasing amplitudes) of the tuning functions, the ERG curves overlap at all spatial frequencies if plotted as a function of temporal stimulation frequency. The ascending slopes of the tuning functions of the VEP overlap if plotted as a function of speed. The descending slopes (which means decreasing amplitudes) of the tuning functions show little (ERG) or no (VEP) overlap and the waveforms at high speeds approach pattern-offset-onset responses. These observations suggest that in the retina motion processing along the ascending slopes of the tuning curves takes place by coding the temporal stimulation frequency which depends on the spatial frequency of the moving pattern. In the brain, however, motion processing is by speed independent of spatial frequency. Simple calculations show that the VEP information is decoded from the ERG signal into a speed signal.

[1]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[2]  H. Spekreijse,et al.  Flicker and movement constituents of the pattern reversal response , 1985, Vision Research.

[3]  Visuell evozierte Potentiale bei Musterbewegung , 1983 .

[4]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[5]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[6]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[7]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[8]  B. B. Lee,et al.  Phase of responses to sinusoidal gratings of simple cells in cat striate cortex. , 1981, Journal of Neurophysiology.

[9]  C. W. Oyster,et al.  The analysis of image motion by the rabbit retina , 1968, The Journal of physiology.

[10]  R. Shapley,et al.  The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[11]  G. Sandini,et al.  Responses of visual cortical cells to periodic and non‐periodic stimuli. , 1979, The Journal of physiology.

[12]  P. Clarke,et al.  Visual evoked potentials to sudden reversal of the motion of a pattern. , 1972, Brain research.

[13]  S. Ullman The measurement of visual motion Computational considerations and some neurophysiological implications , 1983, Trends in Neurosciences.

[14]  R. Holub,et al.  Response of Visual Cortical Neurons of the cat to moving sinusoidal gratings: response-contrast functions and spatiotemporal interactions. , 1981, Journal of neurophysiology.

[15]  G. Trick,et al.  Improved electrode for electroretinography. , 1979, Investigative ophthalmology & visual science.

[16]  M. Korth Pattern‐evoked responses and luminance‐evoked responses in the human electroretinogram. , 1983, The Journal of physiology.

[17]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[18]  E. Altenmüller,et al.  Cortical potentials in humans reflecting the direction of object motion , 1993, Neuroreport.

[19]  P. Clarke,et al.  Are visual evoked potentials to motion-reversal produced by direction-sensitive brain mechanisms? , 1974, Vision research.

[20]  G. Orban,et al.  Unit responses to moving stimuli in area 18 of the cat , 1975, Brain Research.

[21]  D. Burr,et al.  Seeing objects in motion , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[22]  M. Korth,et al.  Spatial contrast transfer functions of the pattern-evoked electroretinogram. , 1985, Investigative ophthalmology & visual science.

[23]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[24]  Colin Blakemore,et al.  Contrast dependence of motion-onset and pattern-reversal evoked potentials , 1995, Vision Research.

[25]  Michael Bach,et al.  Contrast dependency of motion-onset and pattern-reversal VEPs: Interaction of stimulus type, recording site and response component , 1997, Vision Research.

[26]  J. Victor,et al.  Evoked potential and psychophysical analysis of Fourier and non-Fourier motion mechanisms , 1992, Visual Neuroscience.

[27]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[28]  C. W. Oyster,et al.  Direction-selective retinal ganglion cells and control of optokinetic nystagmus in the rabbit. , 1972, Vision research.

[29]  Michael Bach,et al.  Motion adaptation governs the shape of motion-evoked cortical potentials , 1994, Vision Research.

[30]  R. Wurtz Visual receptive fields of striate cortex neurons in awake monkeys. , 1969, Journal of neurophysiology.

[31]  D. Burr,et al.  Spatial and temporal selectivity of the human motion detection system , 1985, Vision Research.

[32]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[33]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[34]  L. Maffei,et al.  The visual cortex as a spatial frequency analyser. , 1973, Vision research.

[35]  J M Zanker,et al.  Cortical potentials reflecting motion processing in humans , 1994, Visual Neuroscience.

[36]  H. Barlow,et al.  Evidence for a Physiological Explanation of the Waterfall Phenomenon and Figural After-effects , 1963, Nature.

[37]  Zur Topographie des Bewegungs-VEP am Menschen , 1988 .

[38]  John Ross,et al.  Visual processing of motion , 1986, Trends in Neurosciences.

[39]  Nikos K. Logothetis,et al.  Physiological Studies of Motion Inputs. , 1994 .

[40]  C. Casanova,et al.  Comparison of the responses to moving texture patterns of simple and complex cells in the cat's area 17. , 1995, Journal of neurophysiology.

[41]  T K Goldstick,et al.  The contrast sensitivity of cat retinal ganglion cells at reduced oxygen tensions. , 1980, The Journal of physiology.

[42]  H. Barlow,et al.  Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit , 1964, The Journal of physiology.

[43]  H. Spekreijse,et al.  Principal components analysis for source localization of VEPs in man , 1987, Vision Research.

[44]  C. Baker,et al.  Human pattern-evoked electroretinogram. , 1984, Journal of neurophysiology.

[45]  F. de Monasterio,et al.  Properties of concentrically organized X and Y ganglion cells of macaque retina. , 1978, Journal of neurophysiology.

[46]  H. Barlow,et al.  Selective Sensitivity to Direction of Movement in Ganglion Cells of the Rabbit Retina , 1963, Science.

[47]  VEP-Untersuchungen zur Kodierung der Geschwindigkeit bewegter Streifenmuster im Kortex des Menschen , 1985 .

[48]  Michael Bach,et al.  Time course of motion adaptation: Motion-onset visual evoked potentials and subjective estimates , 1999, Vision Research.

[49]  Isolation and characteristics of a steady-state visually-evoked potential in humans related to the motion of a stimulus , 1995, Vision Research.

[50]  F. Markwardt,et al.  Influence of velocity, temporal frequency and initial phase position of grating patterns on motion VEP. , 1988, Biomedica biochimica acta.

[51]  M. Wright,et al.  Evidence for "sustained" and "transient" neurones in the cat's visual cortex. , 1974, Vision research.

[52]  D. Mackay,et al.  Electroencephalogram Potentials evoked by Accelerated Visual Motion , 1968, Nature.

[53]  B W van Dijk,et al.  Motion-onset visual-evoked potentials as a function of retinal eccentricity in man. , 1993, Brain research. Cognitive brain research.

[54]  D. Finlay,et al.  Visual evoked potentials to stimuli in apparent motion , 1988, Vision Research.

[55]  J. Movshon,et al.  Chromatic properties of neurons in macaque MT , 1994, Visual Neuroscience.