Recent progress in linear algebra and lattice basis reduction
暂无分享,去创建一个
[1] Paul Walton Purdom,et al. The Analysis of Algorithms , 1995 .
[2] Soumojit Sarkar,et al. Triangular x-basis decompositions and derandomization of linear algebra algorithms over K[x] , 2012, J. Symb. Comput..
[3] Arnold Schönhage,et al. Schnelle Berechnung von Kettenbruchentwicklungen , 1971, Acta Informatica.
[4] S. Liberty,et al. Linear Systems , 2010, Scientific Parallel Computing.
[5] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[6] M. G. Bruin,et al. A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .
[7] Damien Stehlé,et al. An LLL-reduction algorithm with quasi-linear time complexity: extended abstract , 2011, STOC '11.
[8] Arne Storjohann,et al. The shifted number system for fast linear algebra on integer matrices , 2005, J. Complex..
[9] Erich Kaltofen,et al. On the complexity of computing determinants , 2001, computational complexity.
[10] Volker Strassen,et al. Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[11] Jeffrey C. Lagarias,et al. Polynomial Time Algorithms for Finding Integer Relations Among Real Numbers , 1989, STACS.
[12] Damien Stehlé,et al. Perturbation Analysis of the QR factor R in the context of LLL lattice basis reduction , 2012, Math. Comput..
[13] Claude-Pierre Jeannerod,et al. Asymptotically fast polynomial matrix algorithms for multivariable systems , 2005, ArXiv.
[14] Arnold Schönhage,et al. Fast reduction and composition of binary quadratic forms , 1991, ISSAC '91.
[15] Donald L. Kreher,et al. Solving subset sum problems with the L^3 algorithm , 1988 .
[16] László Lovász,et al. Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.
[17] Phong Q. Nguyen,et al. The LLL Algorithm - Survey and Applications , 2009, Information Security and Cryptography.
[18] D. H. Lehmer. Euclid's Algorithm for Large Numbers , 1938 .
[19] Sartaj Sahni,et al. Analysis of algorithms , 2000, Random Struct. Algorithms.
[20] Mark van Hoeij,et al. Gradual Sub-lattice Reduction and a New Complexity for Factoring Polynomials , 2011, Algorithmica.
[21] Claude-Pierre Jeannerod,et al. On the complexity of polynomial matrix computations , 2003, ISSAC '03.
[22] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.