Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil

[1]  D. Myrold,et al.  Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria , 2017, The ISME Journal.

[2]  M. Wagner,et al.  A New Perspective on Microbes Formerly Known as Nitrite-Oxidizing Bacteria. , 2016, Trends in microbiology.

[3]  S. Hart,et al.  Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea , 2016 .

[4]  Lynne A. Goodwin,et al.  Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil , 2016, Standards in Genomic Sciences.

[5]  Jessica A. Kozlowski,et al.  Comparison of Nitrogen Oxide Metabolism among Diverse Ammonia-Oxidizing Bacteria , 2016, Front. Microbiol..

[6]  M. Habteselassie,et al.  Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil , 2016 .

[7]  J. Prosser,et al.  Isolation of ‘Candidatus Nitrosocosmicus franklandus’, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration , 2016, FEMS microbiology ecology.

[8]  D. Myrold,et al.  Nitrification Responses of Soil Ammonia‐Oxidizing Archaea and Bacteria to Ammonium Concentrations , 2015 .

[9]  Deli Chen,et al.  Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. , 2015, FEMS microbiology reviews.

[10]  Jeffrey A. Coulter,et al.  Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production , 2015, Scientific Reports.

[11]  M. Stieglmeier,et al.  Inhibitory Effects of C2 to C10 1-Alkynes on Ammonia Oxidation in Two Nitrososphaera Species , 2015, Applied and Environmental Microbiology.

[12]  W. Raza,et al.  Ammonia oxidizer abundance in paddy soil profile with different fertilizer regimes , 2014 .

[13]  D. Stahl,et al.  Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation , 2014, Proceedings of the National Academy of Sciences.

[14]  J. Prosser,et al.  Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds , 2014, FEMS microbiology ecology.

[15]  M. Könneke,et al.  Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation , 2014, Proceedings of the National Academy of Sciences.

[16]  J. S. Sinninghe Damsté,et al.  A Mesophilic, Autotrophic, Ammonia-Oxidizing Archaeon of Thaumarchaeal Group I.1a Cultivated from a Deep Oligotrophic Soil Horizon , 2014, Applied and Environmental Microbiology.

[17]  Li Xu,et al.  Ammonia-oxidizer communities in an agricultural soil treated with contrasting nitrogen sources , 2013, Front. Microbiol..

[18]  Ji‐Zheng He,et al.  Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on ammonia oxidizers and N2O emissions in a grazed pasture soil. , 2013, The Science of the total environment.

[19]  R. Cichota,et al.  Comparison of APSIM and DNDC simulations of nitrogen transformations and N2O emissions. , 2013, The Science of the total environment.

[20]  D. Myrold,et al.  Use of Aliphatic n-Alkynes To Discriminate Soil Nitrification Activities of Ammonia-Oxidizing Thaumarchaea and Bacteria , 2013, Applied and Environmental Microbiology.

[21]  K. Sahrawat,et al.  A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI). , 2013, Annals of botany.

[22]  W. Wanek,et al.  A novel 15N tracer model reveals: Plant nitrate uptake governs nitrogen transformation rates in agricultural soils , 2013 .

[23]  Ji‐Zheng He,et al.  Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils , 2012 .

[24]  J. Prosser,et al.  Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. , 2012, Trends in microbiology.

[25]  R. Hatzenpichler Diversity, Physiology, and Niche Differentiation of Ammonia-Oxidizing Archaea , 2012, Applied and Environmental Microbiology.

[26]  D. Myrold,et al.  Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials , 2012, The ISME Journal.

[27]  J. S. Sinninghe Damsté,et al.  Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil. , 2012, Environmental microbiology.

[28]  P. Forterre,et al.  Spotlight on the Thaumarchaeota , 2011, The ISME Journal.

[29]  J. S. Sinninghe Damsté,et al.  Enrichment and Characterization of an Autotrophic Ammonia-Oxidizing Archaeon of Mesophilic Crenarchaeal Group I.1a from an Agricultural Soil , 2011, Applied and Environmental Microbiology.

[30]  J. Prosser,et al.  Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil , 2011, Proceedings of the National Academy of Sciences.

[31]  Zhengqin Xiong,et al.  Autotrophic growth of nitrifying community in an agricultural soil , 2011, The ISME Journal.

[32]  Andreas Richter,et al.  Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil , 2011, Proceedings of the National Academy of Sciences.

[33]  L. Sayavedra-Soto,et al.  Ammonia-Oxidizing Bacteria: Their Biochemistry and Molecular Biology , 2011 .

[34]  D. Stahl,et al.  Physiology and Genomics of Ammonia‐Oxidizing Archaea , 2011 .

[35]  J. Stark,et al.  Regulation and measurement of nitrification in terrestrial systems. , 2011, Methods in enzymology.

[36]  M. Habteselassie,et al.  Nitrification exhibits Haldane kinetics in an agricultural soil treated with ammonium sulfate or dairy-waste compost. , 2010, FEMS microbiology ecology.

[37]  D. Myrold,et al.  Evidence for Different Contributions of Archaea and Bacteria to the Ammonia-Oxidizing Potential of Diverse Oregon Soils , 2010, Applied and Environmental Microbiology.

[38]  Stefan Schouten,et al.  Cultivation of Autotrophic Ammonia-Oxidizing Archaea from Marine Sediments in Coculture with Sulfur-Oxidizing Bacteria , 2010, Applied and Environmental Microbiology.

[39]  J. Prosser,et al.  Autotrophic ammonia oxidation by soil thaumarchaea , 2010, Proceedings of the National Academy of Sciences.

[40]  M. Tourna,et al.  Stable Isotope Probing Analysis of Interactions between Ammonia Oxidizers , 2010, Applied and Environmental Microbiology.

[41]  G. Robertson,et al.  Nitrogen in Agriculture: Balancing the Cost of an Essential Resource , 2009 .

[42]  D. Stahl,et al.  Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria , 2009, Nature.

[43]  J. Prosser,et al.  Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. , 2009, FEMS microbiology ecology.

[44]  R. Conrad,et al.  Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. , 2009, Environmental microbiology.

[45]  W. Schlesinger On the fate of anthropogenic nitrogen , 2009, Proceedings of the National Academy of Sciences.

[46]  P. Chain,et al.  Complete Genome Sequence of Nitrosospira multiformis, an Ammonia-Oxidizing Bacterium from the Soil Environment , 2008, Applied and Environmental Microbiology.

[47]  Patrice Cannavo,et al.  Modeling N Dynamics to Assess Environmental Impacts of Cropped Soils , 2008 .

[48]  B. E. Miller,et al.  Gross Nitrogen Transformations in an Agricultural Soil after Repeated Dairy-Waste Application , 2006 .

[49]  M. Könneke,et al.  Isolation of an autotrophic ammonia-oxidizing marine archaeon , 2005, Nature.

[50]  Aaron Marc Saunders,et al.  Influence of Starvation on Potential Ammonia-Oxidizing Activity and amoA mRNA Levels of Nitrosospira briensis , 2005, Applied and Environmental Microbiology.

[51]  B. E. Miller,et al.  Microbial Nitrogen Transformations in Response to Treated Dairy Waste in Agricultural Soils , 2004 .

[52]  L. Jackson,et al.  Application of Real-Time PCR To Study Effects of Ammonium on Population Size of Ammonia-Oxidizing Bacteria in Soil , 2004, Applied and Environmental Microbiology.

[53]  Werner Liesack,et al.  Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. , 2003, Environmental microbiology.

[54]  Bakken,et al.  Comparison of Nitrosospira strains isolated from terrestrial environments. , 1999, FEMS microbiology ecology.

[55]  J. Stark Modeling the temperature response of nitrification , 1996 .

[56]  M. Firestone,et al.  Kinetic characteristics of ammonium-oxidizer communities in a California oak woodland-annual grassland , 1996 .

[57]  W. Tappe,et al.  Ammonia oxidation in nitrosomonas at NH3 concentrations near km: Effects of pH and temperature , 1994 .

[58]  L. Belser,et al.  GROWTH AND OXIDATION KINETICS OF THREE GENERA OF AMMONIA OXIDIZING NITRIFIERS , 1980 .