Mixed projection methods for systems of variational inequalities

Let H be a real Hilbert space. Let $$F:D(F) \subseteq H \to H, K : D(K) \subseteq H \to H$$ be bounded and continuous mappings where D(F) and D(K) are closed convex subsets of H. We introduce and consider the following system of variational inequalities: find [u*,v*]∈D(F) × D(K) such that $$\left\{\begin{array}{lll}&\langle Fu^* - v^*, x - u^*\rangle \geq 0,\quad x \in D(F),\\ &\langle Kv^* + u^*, y - v^*\rangle \geq 0,\quad y \in D(K)\end{array}\right.$$ This system of variational inequalities is closely related to a pseudomonotone variational inequality. The well-known projection method is extended to develop a mixed projection method for solving this system of variational inequalities. No invertibility assumption is imposed on F and K. The operators K and F also need not be defined on compact subsets of H.

[1]  S. Karamardian Complementarity problems over cones with monotone and pseudomonotone maps , 1976 .

[2]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[3]  Lu-Chuan Zeng,et al.  Iterative algorithm for finding approximate solutions to completely generalized strongly nonlinear quasivariational inequalities , 1996 .

[4]  H. Zegeye,et al.  Approximation of solutions of nonlinear equations of Hammerstein type in Hilbert space , 2004 .

[5]  S. Reich Strong convergence theorems for resolvents of accretive operators in Banach spaces , 1980 .

[6]  Habtu Zegeye,et al.  Approximation methods for nonlinear operator equations , 2002 .

[7]  Lu-Chuan Zeng,et al.  On a General Projection Algorithm for Variational Inequalities , 1998 .

[8]  Habtu Zegeye,et al.  Local solvability of a constrainedgradient system of total variation , 2003 .

[9]  S. Karamardian,et al.  Seven kinds of monotone maps , 1990 .

[10]  Schaible Siegfried,et al.  Generalized Monotonicity — Concepts and Uses , 1995 .

[11]  Jen-Chih Yao,et al.  Variational Inequalities with Generalized Monotone Operators , 1994, Math. Oper. Res..

[12]  Wataru Takahashi,et al.  The closedness property and the pseudo-A-properness of accretive operators , 1988 .

[13]  C. Morales,et al.  Surjectivity theorems for multi-valued mappings of accretive type , 1985 .

[14]  F. Giannessi,et al.  Variational inequalities and network equilibrium problems , 1995 .

[15]  Habtu Zegeye,et al.  Approximation of fixed points of weakly contractive nonself maps in Banach spaces , 2002 .

[16]  Haim Brezis,et al.  Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .

[17]  Lu-Chuan Zeng,et al.  Iterative Algorithms for Finding Approximate Solutions for General Strongly Nonlinear Variational Inequalities , 1994 .

[18]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[19]  Xinlong Weng,et al.  Fixed point iteration for local strictly pseudo-contractive mapping , 1991 .