An investigation to the hot deformation characteristics of AZ31 alloy through continuous cooling compression testing method

[1]  H. Choo,et al.  Influence of twinning on the grain refinement during high-temperature deformation in a magnesium alloy , 2011 .

[2]  Ali A. Roostaei,et al.  The semi-solid tensile deformation behavior of wrought AZ31 magnesium alloy , 2010 .

[3]  In-Ho Jung,et al.  Influence of the chemical composition on transformation behaviour of low carbon microalloyed steels , 2009 .

[4]  M. Haghshenas,et al.  A study on the effect of thermo-mechanical parameters on the deformation behavior of Mg–3Al–1Zn , 2008 .

[5]  Hui Zhang,et al.  Flow stress equation of AZ31 magnesium alloy sheet during warm tensile deformation , 2008 .

[6]  Talal Al-Samman,et al.  Room temperature formability of a magnesium AZ31 alloy: Examining the role of texture on the deformation mechanisms , 2008 .

[7]  M. Mabuchi,et al.  Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy , 2008 .

[8]  Y. Prasad,et al.  Hot deformation behaviour of Mg–3Al alloy—A study using processing map , 2008 .

[9]  M. Barnett Twinning and the ductility of magnesium alloys: Part II. “Contraction” twins , 2007 .

[10]  C. H. Cáceres,et al.  On the strain hardening behaviour of magnesium at room temperature , 2007 .

[11]  A. Zarei‐Hanzaki,et al.  Dynamic recrystallization in AZ31 magnesium alloy , 2007 .

[12]  K. P. Rao,et al.  Effect of crystallographic texture on the kinetics of hot deformation of rolled Mg-3Al-1Zn alloy plate , 2006 .

[13]  P. Wanjara,et al.  Continuous Cooling Transformation Temperature and Microstructures of Microalloyed Hypereutectoid Steels , 2006 .

[14]  M. Ohno,et al.  Liquidus and solidus temperatures of Mg-rich Mg–Al–Mn–Zn alloys , 2006 .

[15]  Q. Liu,et al.  Influence of grain orientation on twinning during warm compression of wrought Mg–3Al–1Zn , 2005 .

[16]  S. Agnew,et al.  Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B , 2005 .

[17]  G. Gottstein,et al.  Texture effects on plastic deformation of magnesium , 2005 .

[18]  R. Kaibyshev,et al.  Superplasticity in a magnesium alloy subjected to isothermal rolling , 2004 .

[19]  Lallit Anand,et al.  A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B , 2003 .

[20]  K. Maruyama,et al.  The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys , 2003 .

[21]  S. Agnew,et al.  A Mechanistic Understanding of the Formability of Magnesium: Examining the Role of Temperature on the Deformation Mechanisms , 2003 .

[22]  Seung-Chan Hong,et al.  Influence of deformation induced ferrite transformation on grain refinement of dual phase steel , 2002 .

[23]  Z. Trojanová,et al.  Thermally activated processes in microcrystalline Mg , 2000 .

[24]  S. Yue,et al.  The Microstructural Variations in Ti-6AL-4V During Continuous Cooling Compression Testing , 2000 .

[25]  Janusz Majta,et al.  Use of the computer simulation to predict mechanical properties of C-Mn steel, after thermomechanical processing , 1996 .

[26]  F. J. Humphreys,et al.  Recrystallization and Related Annealing Phenomena , 1995 .

[27]  P. Hodgson,et al.  Austenite flow stress behaviour during continuous cooling through the metastable austenite region , 1995 .

[28]  P. Hodgson,et al.  Continuous cooling deformation testing of steels , 1993, Metallurgical and Materials Transactions A.

[29]  J. Jonas,et al.  Continuous cooling transformation temperatures determined by compression tests in low carbon bainitic grades , 1998 .